Ordered Algebraic Structures

Ordered Algebraic Structures
Author: Jorge Martínez
Publisher: Springer Science & Business Media
Total Pages: 323
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475736274

From the 28th of February through the 3rd of March, 2001, the Department of Math ematics of the University of Florida hosted a conference on the many aspects of the field of Ordered Algebraic Structures. Officially, the title was "Conference on Lattice Ordered Groups and I-Rings", but its subject matter evolved beyond the limitations one might associate with such a label. This volume is officially the proceedings of that conference, although, likewise, it is more accurate to view it as a complement to that event. The conference was the fourth in wh at has turned into aseries of similar conferences, on Ordered Algebraic Structures, held in consecutive years. The first, held at the University of Florida in Spring, 1998, was a modest and informal affair. The fifth is in the final planning stages at this writing, for March 7-9, 2002, at Vanderbilt University. And although these events remain modest and reasonably informal, their scope has broadened, as they have succeeded in attracting mathematicians from other, related fields, as weIl as from more distant lands.

Lattice-ordered Rings and Modules

Lattice-ordered Rings and Modules
Author: Stuart A. Steinberg
Publisher: Springer Science & Business Media
Total Pages: 639
Release: 2009-11-19
Genre: Mathematics
ISBN: 1441917217

This book provides an exposition of the algebraic aspects of the theory of lattice-ordered rings and lattice-ordered modules. All of the background material on rings, modules, and lattice-ordered groups necessary to make the work self-contained and accessible to a variety of readers is included. Filling a gap in the literature, Lattice-Ordered Rings and Modules may be used as a textbook or for self-study by graduate students and researchers studying lattice-ordered rings and lattice-ordered modules. Steinberg presents the material through 800+ extensive examples of varying levels of difficulty along with numerous exercises at the end of each section. Key topics include: lattice-ordered groups, rings, and fields; archimedean $l$-groups; f-rings and larger varieties of $l$-rings; the category of f-modules; various commutativity results.

Lattice-Ordered Groups

Lattice-Ordered Groups
Author: M.E Anderson
Publisher: Springer Science & Business Media
Total Pages: 197
Release: 2012-12-06
Genre: Computers
ISBN: 9400928718

The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].

Theory of Lattice-Ordered Groups

Theory of Lattice-Ordered Groups
Author: Michael Darnel
Publisher: CRC Press
Total Pages: 554
Release: 2021-12-16
Genre: Mathematics
ISBN: 1000105172

Provides a thorough discussion of the orderability of a group. The book details the major developments in the theory of lattice-ordered groups, delineating standard approaches to structural and permutation representations. A radically new presentation of the theory of varieties of lattice-ordered groups is offered.;This work is intended for pure and applied mathematicians and algebraists interested in topics such as group, order, number and lattice theory, universal algebra, and representation theory; and upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price which is available from Marcel Dekker Inc, upon request.

Ordered Algebraic Structures

Ordered Algebraic Structures
Author: W.C. Holland
Publisher: Springer Science & Business Media
Total Pages: 334
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401156409

The conference on Ordered Algebraic Structures held in Curat;ao, from the 26th of June through the 30th of June, 1995, at the Avila Beach Hotel, marked the eighth year of ac tivities by the Caribbean Mathematics Foundation (abbr. CMF), which was the principal sponsor of this conference. CMF was inaugurated in 1988 with a conference on Ordered Algebraic Structures. During the years between these two conferences the field has changed sufficiently, both from my point of view and, I believe, that of my co-organizer, W. Charles Holland, to make one wonder about the label "Ordered Algebraic Structures" itself. We recognized this from the start, and right away this conference carried a subtitle, or, if one prefers, an agenda: we concentrated on the one hand, on traditional themes in the theory of ordered groups, including model-theoretic aspects, and, on the other hand, on matters in which topology (more precisely C(X)-style topology) and category theory would play a prominent role. Plainly, ordered algebra has many faces, and it is becoming increas ingly difficult to organize an intimate conference, such as the ones encouraged in the series sponsored by CMF, in this area on a broad set of themes. These proceedings reflect, accurately we think, the spirit of the conferees, but it is not a faithful record of the papers presented at the conference.

Lattice-Ordered Groups

Lattice-Ordered Groups
Author: A.M. Glass
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400922833

A lattice-ordered group is a mathematical structure combining a (partial) order (lattice) structure and a group structure (on a set) in a compatible way. Thus it is a composite structure, or, a set carrying two or more simple structures in a compatible way. The field of lattice-ordered groups turn up on a wide range of mathematical fields ranging from functional analysis to universal algebra. These papers address various aspects of the field, with wide applicability for interested researchers.

Theory of Lattice-Ordered Groups

Theory of Lattice-Ordered Groups
Author: Michael Darnel
Publisher: CRC Press
Total Pages: 568
Release: 1994-11-15
Genre: Mathematics
ISBN: 9780824793265

Provides a thorough discussion of the orderability of a group. The book details the major developments in the theory of lattice-ordered groups, delineating standard approaches to structural and permutation representations. A radically new presentation of the theory of varieties of lattice-ordered groups is offered.;This work is intended for pure and applied mathematicians and algebraists interested in topics such as group, order, number and lattice theory, universal algebra, and representation theory; and upper-level undergraduate and graduate students in these disciplines.;College or university bookstores may order five or more copies at a special student price which is available from Marcel Dekker Inc, upon request.

Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings

Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings
Author: Niels Schwartz
Publisher: Springer
Total Pages: 276
Release: 2006-11-13
Genre: Mathematics
ISBN: 3540482849

The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

A Course in Finite Group Representation Theory

A Course in Finite Group Representation Theory
Author: Peter Webb
Publisher: Cambridge University Press
Total Pages: 339
Release: 2016-08-19
Genre: Mathematics
ISBN: 1107162394

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.