The Random-Cluster Model

The Random-Cluster Model
Author: Geoffrey R. Grimmett
Publisher: Springer Science & Business Media
Total Pages: 392
Release: 2006-12-13
Genre: Mathematics
ISBN: 3540328912

The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.

The Random-Cluster Model

The Random-Cluster Model
Author: Geoffrey Grimmett
Publisher: Springer Verlag
Total Pages: 377
Release: 2006-01-01
Genre: Mathematics
ISBN: 9783540328902

The random-cluster model has emerged in recent years as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. This systematic study includes accounts of the subcritical and supercritical phases, together with clear statements of important open problems. There is an extensive treatment of the first-order (discontinuous) phase transition, as well as a chapter devoted to applications of the random-cluster method to other models of statistical physics.

Probability on Graphs

Probability on Graphs
Author: Geoffrey Grimmett
Publisher: Cambridge University Press
Total Pages: 279
Release: 2018-01-25
Genre: Mathematics
ISBN: 1108542999

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems
Author: Sacha Friedli
Publisher: Cambridge University Press
Total Pages: 643
Release: 2017-11-23
Genre: Mathematics
ISBN: 1107184827

A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

The Random-Cluster Model

The Random-Cluster Model
Author: Geoffrey R. Grimmett
Publisher: Springer
Total Pages: 378
Release: 2009-09-02
Genre: Mathematics
ISBN: 9783540821588

The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.

Random Graphs, Phase Transitions, and the Gaussian Free Field

Random Graphs, Phase Transitions, and the Gaussian Free Field
Author: Martin T. Barlow
Publisher: Springer Nature
Total Pages: 421
Release: 2019-12-03
Genre: Mathematics
ISBN: 3030320111

The 2017 PIMS-CRM Summer School in Probability was held at the Pacific Institute for the Mathematical Sciences (PIMS) at the University of British Columbia in Vancouver, Canada, during June 5-30, 2017. It had 125 participants from 20 different countries, and featured two main courses, three mini-courses, and twenty-nine lectures. The lecture notes contained in this volume provide introductory accounts of three of the most active and fascinating areas of research in modern probability theory, especially designed for graduate students entering research: Scaling limits of random trees and random graphs (Christina Goldschmidt) Lectures on the Ising and Potts models on the hypercubic lattice (Hugo Duminil-Copin) Extrema of the two-dimensional discrete Gaussian free field (Marek Biskup) Each of these contributions provides a thorough introduction that will be of value to beginners and experts alike.

Probability Theory and Applications

Probability Theory and Applications
Author: Elton P. Hsu
Publisher: American Mathematical Soc.
Total Pages: 402
Release: 1999-01-01
Genre: Mathematics
ISBN: 9780821886885

The volume gives a balanced overview of the current status of probability theory. An extensive bibliography for further study and research is included. This unique collection presents several important areas of current research and a valuable survey reflecting the diversity of the field.

Probability on Discrete Structures

Probability on Discrete Structures
Author: Harry Kesten
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2013-03-14
Genre: Mathematics
ISBN: 3662094444

Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.

Exactly Solved Models: A Journey In Statistical Mechanics - Selected Papers With Commentaries (1963–2008)

Exactly Solved Models: A Journey In Statistical Mechanics - Selected Papers With Commentaries (1963–2008)
Author: Fa Yueh Wu
Publisher: World Scientific
Total Pages: 661
Release: 2009-03-03
Genre: Science
ISBN: 9814471224

This unique volume provides a comprehensive overview of exactly solved models in statistical mechanics by looking at the scientific achievements of F Y Wu in this and related fields, which span four decades of his career. The book is organized into topics ranging from lattice models in condensed matter physics to graph theory in mathematics, and includes the author's pioneering contributions. Through insightful commentaries, the author presents an overview of each of the topics and an insider's look at how crucial developments emerged. With the inclusion of important pedagogical review articles by the author, Exactly Solved Models is an indispensable learning tool for graduate students, and an essential reference and source book for researchers in physics and mathematics as well as historians of science.

Random Graph Dynamics

Random Graph Dynamics
Author: Rick Durrett
Publisher: Cambridge University Press
Total Pages: 203
Release: 2010-05-31
Genre: Mathematics
ISBN: 1139460889

The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.