Self-Assembled InGaAs/GaAs Quantum Dots

Self-Assembled InGaAs/GaAs Quantum Dots
Author:
Publisher: Academic Press
Total Pages: 385
Release: 1999-03-29
Genre: Technology & Engineering
ISBN: 0080864589

This volume is concerned with the crystal growth, optical properties, and optical device application of the self-formed quantum dot, which is one of the major current subjects in the semiconductor research field.The atom-like density of states in quantum dots is expected to drastically improve semiconductor laser performance, and to develop new optical devices. However, since the first theoretical prediction for its great possibilities was presented in 1982, due to the difficulty of their fabrication process. Recently, the advent of self-organized quantum dots has made it possible to apply the results in important optical devices, and further progress is expected in the near future.The authors, working for Fujitsu Laboratories, are leading this quantum-dot research field. In this volume, they describe the state of the art in the entire field, with particular emphasis on practical applications.

Semiconductor Quantum Dots

Semiconductor Quantum Dots
Author: Y. Masumoto
Publisher: Springer Science & Business Media
Total Pages: 500
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662050013

Semiconductor quantum dots represent one of the fields of solid state physics that have experienced the greatest progress in the last decade. Recent years have witnessed the discovery of many striking new aspects of the optical response and electronic transport phenomena. This book surveys this progress in the physics, optical spectroscopy and application-oriented research of semiconductor quantum dots. It focuses especially on excitons, multi-excitons, their dynamical relaxation behaviour and their interactions with the surroundings of a semiconductor quantum dot. Recent developments in fabrication techniques are reviewed and potential applications discussed. This book will serve not only as an introductory textbook for graduate students but also as a concise guide for active researchers.

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots
Author: Robson Ferreira
Publisher: Morgan & Claypool Publishers
Total Pages: 148
Release: 2016-02-23
Genre: Technology & Engineering
ISBN: 1681741539

This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master’s level.

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics
Author: Mohamed Henini
Publisher: Elsevier
Total Pages: 862
Release: 2011-07-28
Genre: Technology & Engineering
ISBN: 0080560474

The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots

Capture and Relaxation in Self-Assembled Semiconductor Quantum Dots
Author: Robson Ferreira
Publisher: Morgan & Claypool Publishers
Total Pages: 112
Release: 2016-02-23
Genre: Technology & Engineering
ISBN: 1681740893

This is an overview of different models and mechanisms developed to describe the capture and relaxation of carriers in quantum-dot systems. Despite their undisputed importance, the mechanisms leading to population and energy exchanges between a quantum dot and its environment are not yet fully understood. The authors develop a first-order approach to such effects, using elementary quantum mechanics and an introduction to the physics of semiconductors. The book results from a series of lectures given by the authors at the Master’s level.

Self-Assembled Quantum Dots

Self-Assembled Quantum Dots
Author: Zhiming M Wang
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2007-11-29
Genre: Technology & Engineering
ISBN: 0387741917

This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.

Quantum Optics with Semiconductor Nanostructures

Quantum Optics with Semiconductor Nanostructures
Author: Frank Jahnke
Publisher: Elsevier
Total Pages: 607
Release: 2012-07-16
Genre: Technology & Engineering
ISBN: 0857096397

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students. - A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics - Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures - Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena

Semiconductor Macroatoms: Basics Physics And Quantum-device Applications

Semiconductor Macroatoms: Basics Physics And Quantum-device Applications
Author: Fausto Rossi
Publisher: World Scientific
Total Pages: 332
Release: 2005-11-10
Genre: Science
ISBN: 1783260122

This book discusses the basic physics of semiconductor macroatoms at the nanoscale as well as their potential application as building blocks for the realization of new-generation quantum devices.It provides a review on state-of-the art fabrication and characterization of semiconductor quantum dots aimed at implementing single-electron/exciton devices for quantum information processing and communication. After an introductory chapter on the fundamentals of quantum dots, a number of more specialized review articles presents a comprehensive picture of this rapidly developing field, specifically including strongly multidisciplinary topics such as state-of-the-art nanofabrication and optical characterization, fully microscopic theoretical modeling of nontrivial many-body processes, as well as design and optimization of novel quantum-device architectures.Sample Chapter(s)