The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors

The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors
Author: Carl. R Poelking
Publisher: Springer
Total Pages: 142
Release: 2017-10-24
Genre: Technology & Engineering
ISBN: 3319695991

This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale – the goal of this work – is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well – and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.

Nanostructured Zinc Oxide

Nanostructured Zinc Oxide
Author: Kamlendra Awasthi
Publisher: Elsevier
Total Pages: 781
Release: 2021-08-10
Genre: Technology & Engineering
ISBN: 0128189010

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Wspc Reference On Organic Electronics, The: Organic Semiconductors (In 2 Volumes)

Wspc Reference On Organic Electronics, The: Organic Semiconductors (In 2 Volumes)
Author: Seth R Marder
Publisher: World Scientific
Total Pages: 896
Release: 2016-06-24
Genre: Science
ISBN: 9814699241

This 2-volume set provides the reader with a basic understanding of the foundational concepts pertaining to the design, synthesis, and applications of conjugated organic materials used as organic semiconductors, in areas including organic photovoltaic devices, light-emitting diodes, field-effect transistors, spintronics, actuation, bioelectronics, thermoelectrics, and nonlinear optics.While there are many monographs in these various areas, the emphasis here is both on the fundamental chemistry and physics concepts underlying the field of organic semiconductors and on how these concepts drive a broad range of applications. This makes the volumes ideal introductory textbooks in the subject. They will thus offer great value to both junior and senior scientists working in areas ranging from organic chemistry to condensed matter physics and materials science and engineering.Number of Illustrations and Tables: 168 b/w illus., 242 colour illus., 13 tables.

Density Functional Theory

Density Functional Theory
Author: Daniel Glossman-Mitnik
Publisher: BoD – Books on Demand
Total Pages: 332
Release: 2022-05-18
Genre: Science
ISBN: 1839698454

Density Functional Theory (DFT) is a powerful technique for calculating and comprehending the molecular and electrical structure of atoms, molecules, clusters, and solids. Its use is based not only on the capacity to calculate the molecular characteristics of the species of interest but also on the provision of interesting concepts that aid in a better understanding of the chemical reactivity of the systems under study. This book presents examples of recent advances, new perspectives, and applications of DFT for the understanding of chemical reactivity through descriptors forming the basis of Conceptual DFT as well as the application of the theory and its related computational procedures in the determination of the molecular properties of different systems of academic, social, and industrial interest.

Fundamentals of Solid-State Lighting

Fundamentals of Solid-State Lighting
Author: Vinod Kumar Khanna
Publisher: CRC Press
Total Pages: 606
Release: 2014-06-03
Genre: Technology & Engineering
ISBN: 1466561092

Compared to traditional electrical filaments, arc lamps, and fluorescent lamps, solid-state lighting offers higher efficiency, reliability, and environmentally friendly technology. LED / solid-state lighting is poised to take over conventional lighting due to cost savings—there is pretty much no debate about this. In response to the recent activity in this field, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays covers a range of solid-state devices, technologies, and materials used for lighting and displays. It also examines auxiliary but critical requirements of efficient applications, such as modeling, thermal management, reliability, and smart lighting. The book discusses performance metrics of LEDs such as efficiency, efficacy, current–voltage characteristics, optical parameters like spectral distribution, color temperature, and beam angle before moving on to luminescence theory, injection luminescence, radiative and non-radiative recombination mechanisms, recombination rates, carrier lifetimes, and related topics. This lays down the groundwork for understanding LED operation. The book then discusses energy gaps, light emission, semiconductor material, special equipment, and laboratory facilities. It also covers production and applications of high-brightness LEDs (HBLEDs) and organic LEDs (OLEDs). LEDs represent the landmark development in lighting since the invention of electric lighting, allowing us to create unique, low-energy lighting solutions, not to talk about their minor maintenance expenses. The rapid strides of LED lighting technology over the last few years have changed the dynamics of the global lighting market, and LEDs are expected to be the mainstream light source in the near future. In a nutshell, the book traces the advances in LEDs, OLEDs, and their applications, and presents an up-to-date and analytical perspective of the scenario for audiences of different backgrounds and interests.

Annual Reports in Computational Chemistry

Annual Reports in Computational Chemistry
Author: David Spellmeyer
Publisher: Elsevier
Total Pages: 273
Release: 2005-04-12
Genre: Science
ISBN: 0080460305

Annual Reports in Computational Chemistry is a new periodical providing timely and critical reviews of important topics in computational chemistry as applied to all chemical disciplines. Topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings. Each volume is organized into (thematic) sections with contributions written by experts. Focusing on the most recent literature and advances in the field, each article covers a specific topic of importance to computational chemists. Annual Reports in Computational Chemistry is a 'must' for researchers and students wishing to stay up-to-date on current developments in computational chemistry.* Broad coverage of computational chemistry and up-to-date information* The topics covered include quantum chemistry, molecular mechanics, force fields, chemical education, and applications in academic and industrial settings* Each chapter reviews the most recent literature on a specific topic of interest to computational chemists

Electronic Processes in Organic Semiconductors

Electronic Processes in Organic Semiconductors
Author: Anna Köhler
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2015-06-08
Genre: Technology & Engineering
ISBN: 3527332928

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

On Exciton–Vibration and Exciton–Photon Interactions in Organic Semiconductors

On Exciton–Vibration and Exciton–Photon Interactions in Organic Semiconductors
Author: Antonios M. Alvertis
Publisher: Springer Nature
Total Pages: 213
Release: 2021-10-25
Genre: Science
ISBN: 303085454X

What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons’, are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.

Handbook of Surfaces and Interfaces of Materials, Five-Volume Set

Handbook of Surfaces and Interfaces of Materials, Five-Volume Set
Author: Hari Singh Nalwa
Publisher: Elsevier
Total Pages: 1915
Release: 2001-10-26
Genre: Technology & Engineering
ISBN: 0080533825

This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineering aspects of materials surfaces and interfaces remains scattered in so many different periodicals, therefore this handbook compilation is needed.The information presented in this multivolume reference draws on two decades of pioneering research on the surfaces and interfaces of materials to offer a complete perspective on the topic. These five volumes-Surface and Interface Phenomena; Surface Characterization and Properties; Nanostructures, Micelles, and Colloids; Thin Films and Layers; Biointerfaces and Applications-provide multidisciplinary review chapters and summarize the current status of the field covering important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniques with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source long due for the scientific community. The complete reference on the topic of surfaces and interfaces of materialsThe information presented in this multivolume reference draws on two decades of pioneering researchProvides multidisciplinary review chapters and summarizes the current status of the fieldCovers important scientific and technological developments made over past decades in surfaces and interfaces of materials and spectroscopic techniquesContributions from internationally recognized experts from all over the world