The Non-Euclidean Revolution

The Non-Euclidean Revolution
Author: Richard J. Trudeau
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 2008-01-21
Genre: Mathematics
ISBN: 0817647821

Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America.

The Non-Euclidean Revolution

The Non-Euclidean Revolution
Author: Richard J. Trudeau
Publisher: Springer Science & Business Media
Total Pages: 279
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461221021

Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world.

The Non-Euclidean Revolution

The Non-Euclidean Revolution
Author: Richard J. Trudeau
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 2009-06-08
Genre: Mathematics
ISBN: 081764783X

Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America.

A History of Non-Euclidean Geometry

A History of Non-Euclidean Geometry
Author: Boris A. Rosenfeld
Publisher: Springer Science & Business Media
Total Pages: 481
Release: 2012-09-08
Genre: Mathematics
ISBN: 1441986804

The Russian edition of this book appeared in 1976 on the hundred-and-fiftieth anniversary of the historic day of February 23, 1826, when LobaeevskiI delivered his famous lecture on his discovery of non-Euclidean geometry. The importance of the discovery of non-Euclidean geometry goes far beyond the limits of geometry itself. It is safe to say that it was a turning point in the history of all mathematics. The scientific revolution of the seventeenth century marked the transition from "mathematics of constant magnitudes" to "mathematics of variable magnitudes. " During the seventies of the last century there occurred another scientific revolution. By that time mathematicians had become familiar with the ideas of non-Euclidean geometry and the algebraic ideas of group and field (all of which appeared at about the same time), and the (later) ideas of set theory. This gave rise to many geometries in addition to the Euclidean geometry previously regarded as the only conceivable possibility, to the arithmetics and algebras of many groups and fields in addition to the arith metic and algebra of real and complex numbers, and, finally, to new mathe matical systems, i. e. , sets furnished with various structures having no classical analogues. Thus in the 1870's there began a new mathematical era usually called, until the middle of the twentieth century, the era of modern mathe matics.

Modern Geometries

Modern Geometries
Author: Michael Henle
Publisher: Pearson
Total Pages: 404
Release: 2001
Genre: Mathematics
ISBN:

Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.

The Mathematics of Harmony

The Mathematics of Harmony
Author: Alexey Stakhov
Publisher: World Scientific
Total Pages: 745
Release: 2009
Genre: Mathematics
ISBN: 9812775838

Assisted by Scott Olsen ( Central Florida Community College, USA ). This volume is a result of the author's four decades of research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the OC Mathematics of Harmony, OCO a new interdisciplinary direction of modern science. This direction has its origins in OC The ElementsOCO of Euclid and has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the OC goldenOCO algebraic equations, the generalized Binet formulas, Fibonacci and OC goldenOCO matrices), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational radices, Fibonacci computers, ternary mirror-symmetrical arithmetic, a new theory of coding and cryptography based on the Fibonacci and OC goldenOCO matrices). The book is intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science. Sample Chapter(s). Introduction (503k). Chapter 1: The Golden Section (2,459k). Contents: Classical Golden Mean, Fibonacci Numbers, and Platonic Solids: The Golden Section; Fibonacci and Lucas Numbers; Regular Polyhedrons; Mathematics of Harmony: Generalizations of Fibonacci Numbers and the Golden Mean; Hyperbolic Fibonacci and Lucas Functions; Fibonacci and Golden Matrices; Application in Computer Science: Algorithmic Measurement Theory; Fibonacci Computers; Codes of the Golden Proportion; Ternary Mirror-Symmetrical Arithmetic; A New Coding Theory Based on a Matrix Approach. Readership: Researchers, teachers and students in mathematics (especially those interested in the Golden Section and Fibonacci numbers), theoretical physics and computer science."

Euclid's Window

Euclid's Window
Author: Leonard Mlodinow
Publisher: Simon and Schuster
Total Pages: 326
Release: 2010-09-28
Genre: Science
ISBN: 1439135371

Through Euclid's Window Leonard Mlodinow brilliantly and delightfully leads us on a journey through five revolutions in geometry, from the Greek concept of parallel lines to the latest notions of hyperspace. Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.

A New Perspective on Relativity

A New Perspective on Relativity
Author: Bernard H. Lavenda
Publisher: World Scientific
Total Pages: 695
Release: 2012
Genre: Science
ISBN: 9814340480

Starting off from noneuclidean geometries, apart from the method of Einstein's equations, this book derives and describes the phenomena of gravitation and diffraction. A historical account is presented, exposing the missing link in Einstein's construction of the theory of general relativity: the uniformly rotating disc, together with his failure to realize, that the Beltrami metric of hyperbolic geometry with constant curvature describes exactly the uniform acceleration observed. This book also explores these questions: * How does time bend? * Why should gravity propagate at the speed of light? * How does the expansion function of the universe relate to the absolute constant of the noneuclidean geometries? * Why was the Sagnac effect ignored? * Can Maxwell's equations accommodate mass? * Is there an inertia due solely to polarization? * Can objects expand in elliptic geometry like they contract in hyperbolic geometry?

Theory of Parallels

Theory of Parallels
Author: Nikolaj Ivanovič Lobačevskij
Publisher: Independently Published
Total Pages: 52
Release: 2019-05-22
Genre:
ISBN: 9781099688812

LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.