The Nature Of Scientific Knowledge
Download The Nature Of Scientific Knowledge full books in PDF, epub, and Kindle. Read online free The Nature Of Scientific Knowledge ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kevin McCain |
Publisher | : Springer |
Total Pages | : 281 |
Release | : 2016-06-25 |
Genre | : Science |
ISBN | : 3319334050 |
This book offers a comprehensive and accessible introduction to the epistemology of science. It not only introduces readers to the general epistemological discussion of the nature of knowledge, but also provides key insights into the particular nuances of scientific knowledge. No prior knowledge of philosophy or science is assumed by The Nature of Scientific Knowledge. Nevertheless, the reader is taken on a journey through several core concepts of epistemology and philosophy of science that not only explores the characteristics of the scientific knowledge of individuals but also the way that the development of scientific knowledge is a particularly social endeavor. The topics covered in this book are of keen interest to students of epistemology and philosophy of science as well as science educators interested in the nature of scientific knowledge. In fact, as a result of its clear and engaging approach to understanding scientific knowledge The Nature of Scientific Knowledge is a book that anyone interested in scientific knowledge, knowledge in general, and any of a myriad of related concepts would be well advised to study closely.
Author | : Sibel Erduran |
Publisher | : Springer |
Total Pages | : 206 |
Release | : 2014-08-20 |
Genre | : Science |
ISBN | : 9401790574 |
Prompted by the ongoing debate among science educators over ‘nature of science’, and its importance in school and university curricula, this book is a clarion call for a broad re-conceptualizing of nature of science in science education. The authors draw on the ‘family resemblance’ approach popularized by Wittgenstein, defining science as a cognitive-epistemic and social-institutional system whose heterogeneous characteristics and influences should be more thoroughly reflected in science education. They seek wherever possible to clarify their developing thesis with visual tools that illustrate how their ideas can be practically applied in science education. The volume’s holistic representation of science, which includes the aims and values, knowledge, practices, techniques, and methodological rules (as well as science’s social and institutional contexts), mirrors its core aim to synthesize perspectives from the fields of philosophy of science and science education. The authors believe that this more integrated conception of nature of science in science education is both innovative and beneficial. They discuss in detail the implications for curriculum content, pedagogy, and learning outcomes, deploy numerous real-life examples, and detail the links between their ideas and curriculum policy more generally.
Author | : National Academies of Sciences, Engineering, and Medicine |
Publisher | : National Academies Press |
Total Pages | : 257 |
Release | : 2019-10-20 |
Genre | : Science |
ISBN | : 0309486165 |
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Author | : Mark L. Taper |
Publisher | : |
Total Pages | : 600 |
Release | : 2004-10 |
Genre | : Mathematics |
ISBN | : |
Mark Taper, Subhash Lele and an esteemed group of contributors explore the relationships among hypotheses, models, data and interference on which scientific progress rests in an attempt to develop a new quantitative framework for evidence.
Author | : J. Faye |
Publisher | : Springer |
Total Pages | : 347 |
Release | : 2016-10-15 |
Genre | : Science |
ISBN | : 1137389834 |
Scientific thinking must be understood as an activity. The acts of interpretation, representation, and explanation are the cognitive processes by which scientific thinking leads to understanding. The book explores the nature of these processes and describes how scientific thinking can only be grasped from a pragmatic perspective.
Author | : National Academy of Sciences |
Publisher | : National Academies Press |
Total Pages | : 150 |
Release | : 1998-05-06 |
Genre | : Education |
ISBN | : 0309063647 |
Today many school students are shielded from one of the most important concepts in modern science: evolution. In engaging and conversational style, Teaching About Evolution and the Nature of Science provides a well-structured framework for understanding and teaching evolution. Written for teachers, parents, and community officials as well as scientists and educators, this book describes how evolution reveals both the great diversity and similarity among the Earth's organisms; it explores how scientists approach the question of evolution; and it illustrates the nature of science as a way of knowing about the natural world. In addition, the book provides answers to frequently asked questions to help readers understand many of the issues and misconceptions about evolution. The book includes sample activities for teaching about evolution and the nature of science. For example, the book includes activities that investigate fossil footprints and population growth that teachers of science can use to introduce principles of evolution. Background information, materials, and step-by-step presentations are provided for each activity. In addition, this volume: Presents the evidence for evolution, including how evolution can be observed today. Explains the nature of science through a variety of examples. Describes how science differs from other human endeavors and why evolution is one of the best avenues for helping students understand this distinction. Answers frequently asked questions about evolution. Teaching About Evolution and the Nature of Science builds on the 1996 National Science Education Standards released by the National Research Councilâ€"and offers detailed guidance on how to evaluate and choose instructional materials that support the standards. Comprehensive and practical, this book brings one of today's educational challenges into focus in a balanced and reasoned discussion. It will be of special interest to teachers of science, school administrators, and interested members of the community.
Author | : Lawrence Flick |
Publisher | : Springer Science & Business Media |
Total Pages | : 458 |
Release | : 2007-10-23 |
Genre | : Science |
ISBN | : 1402026722 |
This book synthesizes current literature and research on scientific inquiry and the nature of science in K-12 instruction. Its presentation of the distinctions and overlaps of inquiry and nature of science as instructional outcomes are unique in contemporary literature. Researchers and teachers will find the text interesting as it carefully explores the subtleties and challenges of designing curriculum and instruction for integrating inquiry and nature of science.
Author | : Kevin McCain |
Publisher | : Routledge |
Total Pages | : 472 |
Release | : 2019-06-11 |
Genre | : Philosophy |
ISBN | : 1351336606 |
What Is Scientific Knowledge? is a much-needed collection of introductory-level chapters on the epistemology of science. Renowned historians, philosophers, science educators, and cognitive scientists have authored 19 original contributions specifically for this volume. The chapters, accessible for students in both philosophy and the sciences, serve as helpful introductions to the primary debates surrounding scientific knowledge. First-year undergraduates can readily understand the variety of discussions in the volume, and yet advanced students and scholars will encounter chapters rich enough to engage their many interests. The variety and coverage in this volume make it the perfect choice for the primary text in courses on scientific knowledge. It can also be used as a supplemental book in classes in epistemology, philosophy of science, and other related areas. Key features: * an accessible and comprehensive introduction to the epistemology of science for a wide variety of students (both undergraduate- and graduate-level) and researchers * written by an international team of senior researchers and the most promising junior scholars * addresses several questions that students and lay people interested in science may already have, including questions about how scientific knowledge is gained, its nature, and the challenges it faces.
Author | : William McComas |
Publisher | : Springer Nature |
Total Pages | : 745 |
Release | : 2020-08-24 |
Genre | : Science |
ISBN | : 3030572390 |
This book offers a comprehensive introduction to Nature of Science (NOS), one of the most important aspects of science teaching and learning, and includes tested strategies for teaching aspects of the NOS in a variety of instructional settings. In line with the recommendations in the field to include NOS in all plans for science instruction, the book provides an accessible resource of background information on NOS, rationales for teaching these targeted NOS aspects, and – most importantly – how to teach about the nature of science in specific instructional contexts. The first section examines the why and what of NOS, its nature, and what research says about how to teach NOS in science settings. The second section focuses on extending knowledge about NOS to question of scientific method, theory-laden observation, the role of experiments and observations and distinctions between science, engineering and technology. The dominant theme of the remainder of the book is a focus on teaching aspects of NOS applicable to a wide variety of instructional environments.
Author | : Paul Hoyningen-Huene |
Publisher | : Oxford University Press, USA |
Total Pages | : 304 |
Release | : 2013-05-02 |
Genre | : Philosophy |
ISBN | : 0199985057 |
In Systematicity, Paul Hoyningen-Huene answers the question "What is science?" by proposing that scientific knowledge is primarily distinguished from other forms of knowledge, especially everyday knowledge, by being more systematic. "Science" is here understood in the broadest possible sense, encompassing not only the natural sciences but also mathematics, the social sciences, and the humanities. The author develops his thesis in nine dimensions in which it is claimed that science is more systematic than other forms of knowledge: regarding descriptions, explanations, predictions, the defense of knowledge claims, critical discourse, epistemic connectedness, an ideal of completeness, knowledge generation, and the representation of knowledge. He compares his view with positions on the question held by philosophers from Aristotle to Nicholas Rescher. The book concludes with an exploration of some consequences of Hoyningen-Huene's view concerning the genesis and dynamics of science, the relationship of science and common sense, normative implications of the thesis, and the demarcation criterion between science and pseudo-science.