What Every Engineer Should Know about Finite Element Analysis, Second Edition,

What Every Engineer Should Know about Finite Element Analysis, Second Edition,
Author: John Brauer
Publisher: CRC Press
Total Pages: 350
Release: 1993-05-05
Genre: Technology & Engineering
ISBN: 9780824789541

Summarizing the history and basic concepts of finite elements in a manner easily understood by all engineers, this concise reference describes specific finite element software applications to structural, thermal, electromagnetic and fluid analysis - detailing the latest developments in design optimization, finite element model building and results processing and future trends.;Requiring no previous knowledge of finite elements analysis, the Second Edition provides new material on: p elements; iterative solvers; design optimization; dynamic open boundary finite elements; electric circuits coupled to finite elements; anisotropic and complex materials; electromagnetic eigenvalues; and automated pre- and post-processing software.;Containing more than 120 tables and computer-drawn illustrations - and including two full-colour plates - What Every Engineer Should Know About Finite Element Analysis should be of use to engineers, engineering students and other professionals involved with product design or analysis.

NASA Tech Brief

NASA Tech Brief
Author: United States. National Aeronautics and Space Administration. Technology Utilization Division
Publisher:
Total Pages: 606
Release: 1971
Genre:
ISBN:

Computational Methods in Nonlinear Structural and Solid Mechanics

Computational Methods in Nonlinear Structural and Solid Mechanics
Author: Ahmed K. Noor
Publisher: Elsevier
Total Pages: 472
Release: 2014-05-20
Genre: Mathematics
ISBN: 1483145646

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.