The Knot Book

The Knot Book
Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
Total Pages: 330
Release: 2004
Genre: Mathematics
ISBN: 0821836781

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

The Knot Book

The Knot Book
Author: Colin C. Adams
Publisher: American Mathematical Soc.
Total Pages: 332
Release: 1994
Genre:
ISBN: 9780821886137

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.

The Mathematics of Knots

The Mathematics of Knots
Author: Markus Banagl
Publisher: Springer Science & Business Media
Total Pages: 363
Release: 2010-11-25
Genre: Mathematics
ISBN: 3642156371

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.

Why Knot?

Why Knot?
Author: Colin Adams
Publisher: Springer Science & Business Media
Total Pages: 82
Release: 2004-03-29
Genre: Mathematics
ISBN: 9781931914222

Colin Adams, well-known for his advanced research in topology and knot theory, is the author of this exciting new book that brings his findings and his passion for the subject to a more general audience. This beautifully illustrated comic book is appropriate for many mathematics courses at the undergraduate level such as liberal arts math, and topology. Additionally, the book could easily challenge high school students in math clubs or honors math courses and is perfect for the lay math enthusiast. Each copy of Why Knot? is packaged with a plastic manipulative called the Tangle R. Adams uses the Tangle because "you can open it up, tie it in a knot and then close it up again." The Tangle is the ultimate tool for knot theory because knots are defined in mathematics as being closed on a loop. Readers use the Tangle to complete the experiments throughout the brief volume. Adams also presents a illustrative and engaging history of knot theory from its early role in chemistry to modern applications such as DNA research, dynamical systems, and fluid mechanics. Real math, unreal fun!

Knots

Knots
Author: Alekseĭ Bronislavovich Sosinskiĭ
Publisher: Harvard University Press
Total Pages: 158
Release: 2002
Genre: Mathematics
ISBN: 9780674009448

This book, written by a mathematician known for his own work on knot theory, is a clear, concise, and engaging introduction to this complicated subject, and a guide to the basic ideas and applications of knot theory. 63 illustrations.

Introduction to Knot Theory

Introduction to Knot Theory
Author: R. H. Crowell
Publisher: Springer Science & Business Media
Total Pages: 191
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461299357

Knot theory is a kind of geometry, and one whose appeal is very direct because the objects studied are perceivable and tangible in everyday physical space. It is a meeting ground of such diverse branches of mathematics as group theory, matrix theory, number theory, algebraic geometry, and differential geometry, to name some of the more prominent ones. It had its origins in the mathematical theory of electricity and in primitive atomic physics, and there are hints today of new applications in certain branches of chemistryJ The outlines of the modern topological theory were worked out by Dehn, Alexander, Reidemeister, and Seifert almost thirty years ago. As a subfield of topology, knot theory forms the core of a wide range of problems dealing with the position of one manifold imbedded within another. This book, which is an elaboration of a series of lectures given by Fox at Haverford College while a Philips Visitor there in the spring of 1956, is an attempt to make the subject accessible to everyone. Primarily it is a text book for a course at the junior-senior level, but we believe that it can be used with profit also by graduate students. Because the algebra required is not the familiar commutative algebra, a disproportionate amount of the book is given over to necessary algebraic preliminaries.

An Interactive Introduction to Knot Theory

An Interactive Introduction to Knot Theory
Author: Inga Johnson
Publisher: Courier Dover Publications
Total Pages: 193
Release: 2017-01-04
Genre: Mathematics
ISBN: 0486818748

Well-written and engaging, this hands-on approach features many exercises to be completed by readers. Topics include knot definition and equivalence, combinatorial and algebraic invariants, unknotting operations, and virtual knots. 2016 edition.

An Introduction to Knot Theory

An Introduction to Knot Theory
Author: W.B.Raymond Lickorish
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Mathematics
ISBN: 146120691X

A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.

Formal Knot Theory

Formal Knot Theory
Author: Louis H. Kauffman
Publisher: Courier Corporation
Total Pages: 274
Release: 2006-01-01
Genre: Mathematics
ISBN: 048645052X

This exploration of combinatorics and knot theory is geared toward advanced undergraduates and graduate students. The author, Louis H. Kauffman, is a professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. Kauffman draws upon his work as a topologist to illustrate the relationships between knot theory and statistical mechanics, quantum theory, and algebra, as well as the role of knot theory in combinatorics. Featured topics include state, trails, and the clock theorem; state polynomials and the duality conjecture; knots and links; axiomatic link calculations; spanning surfaces; the genus of alternative links; and ribbon knots and the Arf invariant. Key concepts are related in easy-to-remember terms, and numerous helpful diagrams appear throughout the text. The author has provided a new supplement, entitled "Remarks on Formal Knot Theory," as well as his article, "New Invariants in the Theory of Knots," first published in The American Mathematical Monthly, March 1988.

Handbook of Knot Theory

Handbook of Knot Theory
Author: William Menasco
Publisher: Elsevier
Total Pages: 502
Release: 2005-08-02
Genre: Mathematics
ISBN: 9780080459547

This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics