The Theory of the Top. Volume I

The Theory of the Top. Volume I
Author: Felix Klein
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2008-12-16
Genre: Mathematics
ISBN: 081764721X

The lecture series on the Theory of the Top was originally given as a dedication to Göttingen University by Felix Klein in 1895, but has since found broader appeal. The Theory of the Top: Volume I. Introduction to the Kinematics and Kinetics of the Top is the first of a series of four self-contained English translations that provide insights into kinetic theory and kinematics.

The Mathematical Theory of Plasticity

The Mathematical Theory of Plasticity
Author: Rodney Hill
Publisher: Oxford University Press
Total Pages: 370
Release: 1998
Genre: Mathematics
ISBN: 9780198503675

First published in 1950, this important and classic book presents a mathematical theory of plastic materials, written by one of the leading exponents.

A Mathematical Theory of Evidence

A Mathematical Theory of Evidence
Author: Glenn Shafer
Publisher: Princeton University Press
Total Pages:
Release: 2020-06-30
Genre: Mathematics
ISBN: 0691214697

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

The Mathematical Theory of Black Holes

The Mathematical Theory of Black Holes
Author: Subrahmanyan Chandrasekhar
Publisher: Oxford University Press
Total Pages: 676
Release: 1998
Genre: Science
ISBN: 9780198503705

Part of the reissued Oxford Classic Texts in the Physical Sciences series, this book was first published in 1983, and has swiftly become one of the great modern classics of relativity theory. It represents a personal testament to the work of the author, who spent several years writing and working-out the entire subject matter. The theory of black holes is the most simple and beautiful consequence of Einstein's relativity theory. At the time of writing there was no physical evidence for the existence of these objects, therefore all that Professor Chandrasekhar used for their construction were modern mathematical concepts of space and time. Since that time a growing body of evidence has pointed to the truth of Professor Chandrasekhar's findings, and the wisdom contained in this book has become fully evident.

Mathematical Theory of Computation

Mathematical Theory of Computation
Author: Zohar Manna
Publisher: Courier Dover Publications
Total Pages: 0
Release: 2003
Genre: Computers
ISBN: 9780486432380

With the objective of making into a science the art of verifying computer programs (debugging), the author addresses both practical and theoretical aspects of the process. A classic of sequential program verification, this volume has been translated into almost a dozen other languages and is much in demand among graduate and advanced undergraduate computer science students. Subjects include computability (with discussions of finite automata and Turing machines); predicate calculus (basic notions, natural deduction, and the resolution method); verification of programs (both flowchart and algol-like programs); flowchart schemas (basic notions, decision problems, formalization in predicate calculus, and translation programs); and the fixpoint theory of programs (functions and functionals, recursive programs, and verification programs). The treamtent is self-contained, and each chapter concludes with bibliographic remarks, references, and problems.

An Introduction to the Mathematical Theory of Waves

An Introduction to the Mathematical Theory of Waves
Author: Roger Knobel
Publisher: American Mathematical Soc.
Total Pages: 212
Release: 2000
Genre: Mathematics
ISBN: 0821820397

This book is based on an undergraduate course taught at the IAS/Park City Mathematics Institute (Utah) on linear and nonlinear waves. The first part of the text overviews the concept of a wave, describes one-dimensional waves using functions of two variables, provides an introduction to partial differential equations, and discusses computer-aided visualization techniques. The second part of the book discusses traveling waves, leading to a description of solitary waves and soliton solutions of the Klein-Gordon and Korteweg-deVries equations. The wave equation is derived to model the small vibrations of a taut string, and solutions are constructed via d'Alembert's formula and Fourier series.The last part of the book discusses waves arising from conservation laws. After deriving and discussing the scalar conservation law, its solution is described using the method of characteristics, leading to the formation of shock and rarefaction waves. Applications of these concepts are then given for models of traffic flow. The intent of this book is to create a text suitable for independent study by undergraduate students in mathematics, engineering, and science. The content of the book is meant to be self-contained, requiring no special reference material. Access to computer software such as MathematicaR, MATLABR, or MapleR is recommended, but not necessary. Scripts for MATLAB applications will be available via the Web. Exercises are given within the text to allow further practice with selected topics.

A View from the Top

A View from the Top
Author: Alex Iosevich
Publisher: American Mathematical Soc.
Total Pages: 154
Release: 2007
Genre: Mathematics
ISBN: 0821843974

Based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another, this book is suitable for those with a basic knowledge of high school mathematics.

The Mathematical Theory of Information

The Mathematical Theory of Information
Author: Jan Kåhre
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2002-06-30
Genre: Technology & Engineering
ISBN: 9781402070648

The general concept of information is here, for the first time, defined mathematically by adding one single axiom to the probability theory. This Mathematical Theory of Information is explored in fourteen chapters: 1. Information can be measured in different units, in anything from bits to dollars. We will here argue that any measure is acceptable if it does not violate the Law of Diminishing Information. This law is supported by two independent arguments: one derived from the Bar-Hillel ideal receiver, the other is based on Shannon's noisy channel. The entropy in the 'classical information theory' is one of the measures conforming to the Law of Diminishing Information, but it has, however, properties such as being symmetric, which makes it unsuitable for some applications. The measure reliability is found to be a universal information measure. 2. For discrete and finite signals, the Law of Diminishing Information is defined mathematically, using probability theory and matrix algebra. 3. The Law of Diminishing Information is used as an axiom to derive essential properties of information. Byron's law: there is more information in a lie than in gibberish. Preservation: no information is lost in a reversible channel. Etc. The Mathematical Theory of Information supports colligation, i. e. the property to bind facts together making 'two plus two greater than four'. Colligation is a must when the information carries knowledge, or is a base for decisions. In such cases, reliability is always a useful information measure. Entropy does not allow colligation.

The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods
Author: Susanne Brenner
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475736584

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide