The Material Point Method For Geotechnical Engineering
Download The Material Point Method For Geotechnical Engineering full books in PDF, epub, and Kindle. Read online free The Material Point Method For Geotechnical Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James Fern |
Publisher | : CRC Press |
Total Pages | : 420 |
Release | : 2019-01-30 |
Genre | : Technology & Engineering |
ISBN | : 0429650663 |
This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.
Author | : James Fern |
Publisher | : CRC Press |
Total Pages | : 423 |
Release | : 2019-01-30 |
Genre | : Technology & Engineering |
ISBN | : 0429648022 |
This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.
Author | : David M Potts |
Publisher | : Thomas Telford |
Total Pages | : 456 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 9780727727831 |
An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.
Author | : Jay Ameratunga |
Publisher | : Springer |
Total Pages | : 236 |
Release | : 2015-12-11 |
Genre | : Science |
ISBN | : 8132226291 |
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.
Author | : Michael A. Hicks |
Publisher | : CRC Press |
Total Pages | : 1368 |
Release | : 2014-05-29 |
Genre | : Technology & Engineering |
ISBN | : 1315751828 |
Numerical Methods in Geotechnical Engineering contains the proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE 2014, Delft, The Netherlands, 18-20 June 2014). It is the eighth in a series of conferences organised by the European Regional Technical Committee ERTC7 under the auspices of the International
Author | : Michael Jefferies |
Publisher | : CRC Press |
Total Pages | : 625 |
Release | : 2006-09-04 |
Genre | : Science |
ISBN | : 020330196X |
Soil liquefaction is a major concern in areas of the world subject to seismic activity or other repeated vibration loads. This book brings together a large body of information on the topic, and presents it within a unified and simple framework. The result is a book which will provide the practising civil engineer with a very sound understanding of
Author | : Thomas Benz |
Publisher | : CRC Press |
Total Pages | : 976 |
Release | : 2010-05-25 |
Genre | : Technology & Engineering |
ISBN | : 0203842367 |
Numerical Methods in Geotechnical Engineering contains 153 scientific papers presented at the 7th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2010, held at Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, 2 4 June 2010.The contributions cover topics from emerging research to engineering pra
Author | : Burt G. Look |
Publisher | : CRC Press |
Total Pages | : 356 |
Release | : 2007-04-26 |
Genre | : Science |
ISBN | : 020394660X |
This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.
Author | : António S. Cardoso |
Publisher | : CRC Press |
Total Pages | : 2430 |
Release | : 2018-06-19 |
Genre | : Technology & Engineering |
ISBN | : 1351003607 |
Numerical Methods in Geotechnical Engineering IX contains 204 technical and scientific papers presented at the 9th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE2018, Porto, Portugal, 25—27 June 2018). The papers cover a wide range of topics in the field of computational geotechnics, providing an overview of recent developments on scientific achievements, innovations and engineering applications related to or employing numerical methods. They deal with subjects from emerging research to engineering practice, and are grouped under the following themes: Constitutive modelling and numerical implementation Finite element, discrete element and other numerical methods. Coupling of diverse methods Reliability and probability analysis Large deformation – large strain analysis Artificial intelligence and neural networks Ground flow, thermal and coupled analysis Earthquake engineering, soil dynamics and soil-structure interactions Rock mechanics Application of numerical methods in the context of the Eurocodes Shallow and deep foundations Slopes and cuts Supported excavations and retaining walls Embankments and dams Tunnels and caverns (and pipelines) Ground improvement and reinforcement Offshore geotechnical engineering Propagation of vibrations Following the objectives of previous eight thematic conferences, (1986 Stuttgart, Germany; 1990 Santander, Spain; 1994 Manchester, United Kingdom; 1998 Udine, Italy; 2002 Paris, France; 2006 Graz, Austria; 2010 Trondheim, Norway; 2014 Delft, The Netherlands), Numerical Methods in Geotechnical Engineering IX updates the state-of-the-art regarding the application of numerical methods in geotechnics, both in a scientific perspective and in what concerns its application for solving practical boundary value problems. The book will be much of interest to engineers, academics and professionals involved or interested in Geotechnical Engineering.
Author | : Pijush Samui |
Publisher | : Academic Press |
Total Pages | : 518 |
Release | : 2020-12-01 |
Genre | : Technology & Engineering |
ISBN | : 0128218525 |
Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work