The Local Structure of Finite Groups of Characteristic 2 Type

The Local Structure of Finite Groups of Characteristic 2 Type
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
Total Pages: 743
Release: 1983
Genre: Mathematics
ISBN: 0821822764

Studies the generic finite simple group of characteristic 2 type whose proper subgroups are of known type. The authors' principal result (the Trichotomy Theorem) asserts that such a group has one of three precisely determined internal structures.

The Classification of the Finite Simple Groups, Number 2

The Classification of the Finite Simple Groups, Number 2
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
Total Pages: 246
Release: 1994
Genre: Mathematics
ISBN: 9780821803905

The second volume of a series devoted to reorganizing and simplifying proof of the classification of the finite simple groups. In a single chapter, it lays the groundwork for the forthcoming analysis of finite simple groups, beginning with the theory of components, layers, and the generalized Fitting subgroup, which has been developed largely since Gorenstein's basic 1968 text and is now central to understanding the structure of finite groups. Suitable as an auxiliary text for a graduate course in group theory. Member prices are $35 for individual and $47 for institutions. Annotation copyright by Book News, Inc., Portland, OR

The Classification of Finite Simple Groups

The Classification of Finite Simple Groups
Author: Michael Aschbacher
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2011
Genre: Mathematics
ISBN: 0821853368

Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.

Finite and Locally Finite Groups

Finite and Locally Finite Groups
Author: B. Hartley
Publisher: Springer Science & Business Media
Total Pages: 469
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401103291

This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni

The Classification of the Finite Simple Groups

The Classification of the Finite Simple Groups
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
Total Pages: 186
Release: 1994-11-18
Genre: Mathematics
ISBN: 0821809601

The classification of the finite simple groups is one of the major feats of contemporary mathematical research, but its proof has never been completely extricated from the journal literature in which it first appeared. This book serves as an introduction to a series devoted to organizing and simplifying the proof. The purpose of the series is to present as direct and coherent a proof as is possible with existing techniques. This first volume, which sets up the structure for the entire series, begins with largely informal discussions of the relationship between the Classification Theorem and the general structure of finite groups, as well as the general strategy to be followed in the series and a comparison with the original proof. Also listed are background results from the literature that will be used in subsequent volumes. Next, the authors formally present the structure of the proof and the plan for the series of volumes in the form of two grids, giving the main case division of the proof as well as the principal milestones in the analysis of each case. Thumbnail sketches are given of the ten or so principal methods underlying the proof. Much of the book is written in an expository style accessible to nonspecialists.

The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3
Author: Daniel Gorenstein
Publisher: American Mathematical Soc.
Total Pages: 446
Release: 1994
Genre: Finite simple groups
ISBN: 9780821803912

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type
Author: Carles Broto
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2020-02-13
Genre: Education
ISBN: 1470437724

For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).

Equivalences of Classifying Spaces Completed at the Prime Two

Equivalences of Classifying Spaces Completed at the Prime Two
Author: Robert Oliver
Publisher: American Mathematical Soc.
Total Pages: 116
Release: 2006
Genre: Mathematics
ISBN: 0821838288

We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.

First Trilogy about Sylow Theory in Locally Finite Groups

First Trilogy about Sylow Theory in Locally Finite Groups
Author: Felix F. Flemisch
Publisher: BoD – Books on Demand
Total Pages: 266
Release: 2023-11-15
Genre: Mathematics
ISBN: 3750403988

Part 1 (ISBN 978-3-7568-0801-4) of the Trilogy is based on the BoD-Book "Characterising locally finite groups satisfying the strong Sylow Theorem for the prime p - Revised edition" (see ISBN 978-3-7562-3416-5). The First edition of Part 1 (see ISBN 978-3-7543-6087-3) removes the highlights in light green of the Revised edition, adds 14 pages to the AGTA paper and 10 pages to the Revised edition. It includes Reference [11] resp. [10] as Appendix 1 resp. Appendix 2 and calls to mind Professor Otto H. Kegel's contribution to the conference Ischia Group Theory 2016. The Second edition introduces a uniform page numbering, adds page numbers to the appendices, improves 19 pages, adds Pages 109 to 112 and a Table of Contents. Part 2 (ISBN 978-3-7543-3642-8) of the Trilogy is based on the author's research paper "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups". We first give an overview of simple locally finite groups and reduce their Sylow theory for the prime p to a conjecture of Prof. Otto H. Kegel about the rank-unbounded ones of the 19 known families of finite simple groups. Part 2 introduces a new scheme to describe the 19 families, the family T of types, defines the rank of each type, and emphasises the rôle of Kegel covers. This part presents a unified picture of known results and is the reason why our title starts with "About". We then apply new ideas to prove the conjecture for the alternating groups (see Page ii). Thereupon we remember Kegel covers and *-sequences. Finally we suggest a plan how to prove the conjecture step-by-step which leads to further conjectures thereby unifying Sylow theory in locally finite simple groups with Sylow theory in locally finite and p-soluble groups. In Part 3 (ISBN 978-3-7578-6001-1) of the Trilogy we continue the program begun in [10] to optimise along the way 1) its Theorem about the first type "An" of infinite families of finite simple groups step-by-step to further types by proving it for the second type "A = PSLn". We start with proving the Conjecture 2 of [10] about the General Linear Groups by using new ideas (see Page ii), and then break down this insight to the Special Linear and the PSL Groups. We close with suggestions for future research regarding the remaining rank-unbounded types (the "Classical Groups") and the way 2), the (locally) finite and p-soluble groups, and Augustin-Louis Cauchy's and Évariste Galois' contributions to Sylow theory in finite groups.