Number Theory and Applications

Number Theory and Applications
Author: S.D. Adhikari
Publisher: Springer
Total Pages: 285
Release: 2009-06-15
Genre: Mathematics
ISBN: 9386279460

This collection of articles contains the proceedings of the two international conferences (on Number Theory and Cryptography) held at the Harish - Chandra Research Institute. In recent years the interest in number theory has increased due to its applications in areas like error-correcting codes and cryptography. These proceedings contain papers in various areas of number theory, such as combinatorial, algebraic, analytic and transcendental aspects, arithmetic algebraic geometry, as well as graph theory and cryptography. While some papers do contain new results, several of the papers are expository articles that mention open questions, which will be useful to young researchers.

Sieves in Number Theory

Sieves in Number Theory
Author: George Greaves
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2013-03-09
Genre: Mathematics
ISBN: 366204658X

This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.

Ramanujan's Place in the World of Mathematics

Ramanujan's Place in the World of Mathematics
Author: Krishnaswami Alladi
Publisher: Springer Nature
Total Pages: 265
Release: 2021-09-17
Genre: Mathematics
ISBN: 9811562415

The First Edition of the book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians in history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life with the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. Also, among the articles are reviews of three important books on Ramanujan’s mathematics and life. In addition, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his path-breaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. This Second Edition is an expanded version of the first with six more articles by the author. Of note is the inclusion of a detailed review of the movie The Man Who Knew Infinity, a description of the fundamental work of the SASTRA Ramanujan Prize Winners, and an account of the Royal Society Conference to honour Ramanujan’s legacy on the centenary of his election as FRS.

Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference

Algebraic Geometry And Its Applications: Dedicated To Gilles Lachaud On His 60th Birthday - Proceedings Of The First Saga Conference
Author: Robert Rolland
Publisher: World Scientific
Total Pages: 530
Release: 2008-04-17
Genre: Mathematics
ISBN: 9814471666

This volume covers many topics, including number theory, Boolean functions, combinatorial geometry, and algorithms over finite fields. It contains many new, theoretical and applicable results, as well as surveys that were presented by the top specialists in these areas. New results include an answer to one of Serre's questions, posted in a letter to Top; cryptographic applications of the discrete logarithm problem related to elliptic curves and hyperelliptic curves; construction of function field towers; construction of new classes of Boolean cryptographic functions; and algorithmic applications of algebraic geometry.

An Introduction to the Representation Theory of Groups

An Introduction to the Representation Theory of Groups
Author: Emmanuel Kowalski
Publisher: American Mathematical Society
Total Pages: 442
Release: 2014-08-28
Genre: Mathematics
ISBN: 1470409666

Representation theory is an important part of modern mathematics, not only as a subject in its own right but also as a tool for many applications. It provides a means for exploiting symmetry, making it particularly useful in number theory, algebraic geometry, and differential geometry, as well as classical and modern physics. The goal of this book is to present, in a motivated manner, the basic formalism of representation theory as well as some important applications. The style is intended to allow the reader to gain access to the insights and ideas of representation theory--not only to verify that a certain result is true, but also to explain why it is important and why the proof is natural. The presentation emphasizes the fact that the ideas of representation theory appear, sometimes in slightly different ways, in many contexts. Thus the book discusses in some detail the fundamental notions of representation theory for arbitrary groups. It then considers the special case of complex representations of finite groups and discusses the representations of compact groups, in both cases with some important applications. There is a short introduction to algebraic groups as well as an introduction to unitary representations of some noncompact groups. The text includes many exercises and examples.

Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula
Author: Werner Müller
Publisher: Springer
Total Pages: 581
Release: 2016-09-20
Genre: Mathematics
ISBN: 3319414240

Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.

Number Theory

Number Theory
Author: H. Kisilevsky
Publisher: American Mathematical Soc.
Total Pages: 329
Release: 2004
Genre: Mathematics
ISBN: 0821833316

Collects articles from the meeting of the Canadian Number Theory Association held at the Centre de Recherches Mathematiques (CRM) at the University of Montreal. This book covers topics such as algebraic number theory, analytic number theory, arithmetic algebraic geometry, computational number theory, and Diophantine analysis and approximation.