Nonlinear Instability of Nonparallel Flows

Nonlinear Instability of Nonparallel Flows
Author: S.P. Lin
Publisher: Springer Science & Business Media
Total Pages: 479
Release: 2012-12-06
Genre: Science
ISBN: 3642850847

The IUTAM Symposium on Nonlinear Instability of Nonparallel Flows was held at Clarkson University, Potsdam, NY 13699-5725, USA from 26 to 31 July 1993. It consisted of 9 general speeches, 35 lectures and 15 poster-seminar presentations. The papers were grouped in fairly focused sessions on boundary layers, shear flows, vortices, wakes, nonlinear waves and jets. The symposium was fol lowed by a workshop in which the subject matter discussed was sum marized and some further work for future investigation was recom mended. The highlights of the workshop will be reported elsewhere. In this book many of the papers that describe the ideas presented at the symposium are collected to provide a reference for researchers in charting the future course of their studies in the area of nonlinear instability of nonparallel flows. The papers in this book are grouped under the following headings: • Boundary layers and shear flows • Compressibility and thermal effects • Vortices and wakes • Nonlinear waves and jets In the lead paper ofthis book M. E. Goldstein describes an asymp totic theory of nonlinear interaction between two spatially growing oblique waves on nonparallel boundary and free-shear layers. The wave interaction originates from the nonlinear critical layer and is responsive to weakly nonparallel effects. The theory results in a sys tem of integral differential equations which appear to be relevant near the upper branch of the neutral curve.

IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers

IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers
Author: Peter W. Duck
Publisher: Springer Science & Business Media
Total Pages: 458
Release: 2012-12-06
Genre: Science
ISBN: 9400917007

Most fluid flows of practical importance are fully three-dimensional, so the non-linear instability properties of three-dimensional flows are of particular interest. In some cases the three-dimensionality may have been caused by a finite amplitude disturbance whilst, more usually, the unperturbed state is three-dimensional. Practical applications where transition is thought to be associated with non-linearity in a three- dimensional flow arise, for example, in aerodynamics (swept wings, engine nacelles, etc.), turbines and aortic blood flow. Here inviscid `cross-flow' disturbances as well as Tollmien-Schlichting and Görtler vortices can all occur simultaneously and their mutual non-linear behaviour must be understood if transition is to be predicted. The non-linear interactions are so complex that usually fully numerical or combined asymptotic/numerical methods must be used. Moreover, in view of the complexity of the instability processes, there is also a growing need for detailed and accurate experimental information. Carefully conducted tests allow us to identify those elements of a particular problem which are dominant. This assists in both the formulation of a relevant theoretical problem and the subsequent physical validation of predictions. It should be noted that the demands made upon the skills of the experimentalist are high and that the tests can be extremely sophisticated - often making use of the latest developments in flow diagnostic techniques, automated high speed data gathering, data analysis, fast processing and presentation.

Instability, Transition, and Turbulence

Instability, Transition, and Turbulence
Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
Total Pages: 626
Release: 2012-12-06
Genre: Science
ISBN: 1461229561

This volume contains the proceedings of the Workshop on In stability, Transition and Turbulence, sponsored by the Institute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC), during July 8 to August 2, 1991. This is the second workshop in the series on the subject. The first was held in 1989, and its proceedings were published by Springer-Verlag under the title "Instability and Transition" edited by M. Y. Hussaini and R. G. Voigt. The objectives of these work shops are to i) expose the academic community to current technologically im portant issues of transition and turbulence in shear flows over the entire speed range, ii) acquaint the academic community with the unique combination of theoretical, computational and experimental capabilities at LaRC and foster interaction with these capabilities, and iii) accelerate progress in elucidating the fundamental phenomena of transition and turbulence, leading to improved transition and turbulence modeling in design methodologies. The research areas covered in these proceedings include receptiv ity and roughness, nonlinear theories of transition, numerical simu lation of spatially evolving flows, modelling of transitional and fully turbulent flows as well as some experiments on instability and tran sition. In addition a one-day mini-symposium was held to discuss 1 recent and planned experiments on turbulent flow over a backward facing step.

Transition, Turbulence and Combustion

Transition, Turbulence and Combustion
Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
Total Pages: 394
Release: 2012-12-06
Genre: Science
ISBN: 9401110328

These two volumes contain the proceedings of the Workshop on Transition, Turbulence and Combustion, sponsored by the Insti tute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC), during June 7 to July 2, 1993. Volume I contains the contributions from the transi tion research, and Volume II contains the contributions from both the turbulence and combustion research. This is the third workshop in the series on the subject. The first was held in 1989, the second in 1991, and their proceedings were published by Springer-Verlag under the titles "Instability and Transition" (edited by M. Y. Hussaini and R. G. Voigt) and "Instability, Transition and Turbulence" (edited by M. Y. Hussaini, A. Kumar and C. L. Streett) respectively. The objectives of these workshops are to expose the academic community to current technologically important issues of transition, turbulence and combustion, and to acquaint the academic commu nity with the unique combination of theoretical, computational and experimental capabilities at LaRC. It is hoped these will foster con tinued interactions, and accelerate progress in elucidating the funda mental phenomena of transition, turbulence and combustion. The research areas of interest in transition covered the full range of the subject: linear and nonlinear stability, direct and large-eddy simulation and phenomenological modeling of the transition zone.