Data Quality and its Impacts on Decision-Making

Data Quality and its Impacts on Decision-Making
Author: Christoph Samitsch
Publisher: Springer
Total Pages: 70
Release: 2014-12-01
Genre: Business & Economics
ISBN: 3658082003

​Christoph Samitsch investigates whether decision-making efficiency is being influenced by the quality of data and information. Results of the research provide evidence that defined data quality dimensions have an effect on decision-making performance as well as the time it takes to make a decision.

Processing and Managing Complex Data for Decision Support

Processing and Managing Complex Data for Decision Support
Author: Darmont, J‚r“me
Publisher: IGI Global
Total Pages: 433
Release: 2006-03-31
Genre: Computers
ISBN: 1591406579

"This book provides an overall view of the emerging field of complex data processing, highlighting the similarities between the different data, issues and approaches"--Provided by publisher.

Handbook on Decision Support Systems 1

Handbook on Decision Support Systems 1
Author: Frada Burstein
Publisher: Springer Science & Business Media
Total Pages: 886
Release: 2008-01-22
Genre: Computers
ISBN: 3540487131

Decision support systems have experienced a marked increase in attention and importance over the past 25 years. The aim of this book is to survey the decision support system (DSS) field – covering both developed territory and emergent frontiers. It will give the reader a clear understanding of fundamental DSS concepts, methods, technologies, trends, and issues. It will serve as a basic reference work for DSS research, practice, and instruction. To achieve these goals, the book has been designed according to a ten-part structure, divided in two volumes with chapters authored by well-known, well-versed scholars and practitioners from the DSS community.

The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement
Author: David Loshin
Publisher: Elsevier
Total Pages: 423
Release: 2010-11-22
Genre: Computers
ISBN: 0080920349

The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Database Systems for Advanced Applications

Database Systems for Advanced Applications
Author: Lei Chen
Publisher: Springer
Total Pages: 383
Release: 2009-08-27
Genre: Computers
ISBN: 3642042058

DASFAA is an annual international database conference, located in the Asia- Paci?cregion,whichshowcasesstate-of-the-artR & Dactivities in databases- tems and their applications. It provides a forum for technical presentations and discussions among database researchers, developers and users from academia, business and industry. DASFAA 2009, the 14th in the series, was held during April 20-23, 2009 in Brisbane, Australia. In this year, we carefully selected six workshops, each focusing on speci?c research issues that contribute to the main themes of the DASFAA conference. Thisvolumecontainsthe?nalversionsofpapersacceptedforthesesixworkshops that were held in conjunction with DASFAA 2009. They are: – First International Workshop on Benchmarking of XML and Semantic Web Applications (BenchmarX 2009) – Second International Workshop on Managing Data Quality in Collaborative Information Systems (MCIS 2009) – First International Workshop on Data and Process Provenance (WDPP 2009) – First International Workshop on Privacy-Preserving Data Analysis (PPDA 2009) – FirstInternationalWorkshoponMobileBusinessCollaboration(MBC2009) – DASFAA 2009 PhD Workshop All the workshops were selected via a public call-for-proposals process. The workshop organizers put a tremendous amount of e?ort into soliciting and - lecting papers with a balance of high quality, new ideas and new applications. We asked all workshops to follow a rigid paper selection process, including the procedure to ensure that any Program Committee members are excluded from the paper review process of any paper they are involved with. A requirement about the overall paper acceptance rate of no more than 50% was also imposed on all the workshops.

Non-Invasive Data Governance

Non-Invasive Data Governance
Author: Robert S. Seiner
Publisher: Technics Publications
Total Pages: 147
Release: 2014-09-01
Genre: Computers
ISBN: 1634620453

Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.

The Adaptive Decision Maker

The Adaptive Decision Maker
Author: John W. Payne
Publisher: Cambridge University Press
Total Pages: 352
Release: 1993-05-28
Genre: Education
ISBN: 9780521425261

The Adaptive Decision Maker argues that people use a variety of strategies to make judgments and choices. The authors introduce a model that shows how decision makers balance effort and accuracy considerations and predicts which strategy a person will use in a given situation. A series of experiments testing the model are presented, and the authors analyse how the model can lead to improved decisions and opportunities for further research.

Enterprise Knowledge Management

Enterprise Knowledge Management
Author: David Loshin
Publisher: Morgan Kaufmann
Total Pages: 516
Release: 2001
Genre: Business & Economics
ISBN: 9780124558403

This volume presents a methodology for defining, measuring and improving data quality. It lays out an economic framework for understanding the value of data quality, then outlines data quality rules and domain- and mapping-based approaches to consolidating enterprise knowledge.

Journey to Data Quality

Journey to Data Quality
Author: Yang W. Lee
Publisher: MIT Press (MA)
Total Pages: 248
Release: 2006
Genre: Business & Economics
ISBN:

All organizations today confront data quality problems, both systemic and structural. Neither ad hoc approaches nor fixes at the systems level--installing the latest software or developing an expensive data warehouse--solve the basic problem of bad data quality practices. Journey to Data Qualityoffers a roadmap that can be used by practitioners, executives, and students for planning and implementing a viable data and information quality management program. This practical guide, based on rigorous research and informed by real-world examples, describes the challenges of data management and provides the principles, strategies, tools, and techniques necessary to meet them. The authors, all leaders in the data quality field for many years, discuss how to make the economic case for data quality and the importance of getting an organization's leaders on board. They outline different approaches for assessing data, both subjectively (by users) and objectively (using sampling and other techniques). They describe real problems and solutions, including efforts to find the root causes of data quality problems at a healthcare organization and data quality initiatives taken by a large teaching hospital. They address setting company policy on data quality and, finally, they consider future challenges on the journey to data quality.

Executing Data Quality Projects

Executing Data Quality Projects
Author: Danette McGilvray
Publisher: Academic Press
Total Pages: 378
Release: 2021-05-27
Genre: Computers
ISBN: 0128180161

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online