Fundamentals of Astrophysics

Fundamentals of Astrophysics
Author: Stan Owocki
Publisher: Cambridge University Press
Total Pages: 306
Release: 2021-06-03
Genre: Science
ISBN: 1108952828

This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with 'quick questions' to spur practice in basic computations, together with more challenging multi-part exercises at the end of each chapter. Advanced concepts like the quantum nature of energy and radiation are developed as needed. The text's approach and level bridge the wide gap between introductory astronomy texts for non-science majors and advanced undergraduate texts for astrophysics majors.

Principles of Stellar Evolution and Nucleosynthesis

Principles of Stellar Evolution and Nucleosynthesis
Author: Donald D. Clayton
Publisher: University of Chicago Press
Total Pages: 634
Release: 1983
Genre: Science
ISBN: 0226109534

Donald D. Clayton's Principles of Stellar Evolution and Nucleosynthesis remains the standard work on the subject, a popular textbook for students in astronomy and astrophysics and a rich sourcebook for researchers. The basic principles of physics as they apply to the origin and evolution of stars and physical processes of the stellar interior are thoroughly and systematically set out. Clayton's new preface, which includes commentary and selected references to the recent literature, reviews the most important research carried out since the book's original publication in 1968.

Fundamentals of Galaxy Dynamics, Formation and Evolution

Fundamentals of Galaxy Dynamics, Formation and Evolution
Author: Ignacio Ferreras
Publisher: UCL Press
Total Pages: 200
Release: 2019-04-02
Genre: Science
ISBN: 1911307614

Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.

Principles of Astrophysics

Principles of Astrophysics
Author: Charles Keeton
Publisher: Springer
Total Pages: 444
Release: 2014-05-10
Genre: Science
ISBN: 146149236X

This book gives a survey of astrophysics at the advanced undergraduate level, providing a physics-centred analysis of a broad range of astronomical systems. It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students. The organisation is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around. The first half of the book focuses on gravity. The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass. The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to address one of the big questions. While “Why are we here?” lies beyond the realm of physics, a closely related question is within our reach: “How did we get here?” The goal of Chapters 12-20 is to understand the physics behind the remarkable story of how the Universe, Earth and life were formed. This book assumes familiarity with vector calculus and introductory physics (mechanics, electromagnetism, gas physics and atomic physics); however, all of the physics topics are reviewed as they come up (and vital aspects of vector calculus are reviewed in the Appendix).

Stellar Interiors

Stellar Interiors
Author: Carl J. Hansen
Publisher: Springer Science & Business Media
Total Pages: 453
Release: 2012-12-06
Genre: Science
ISBN: 1468402145

That trees should have been cut down to provide paper for this book was an ecological afIront. From a book review. - Anthony Blond (in the Spectator, 1983) The first modern text on our subject, Structure and Evolution of the Stars, was published over thirty years ago. In it, Martin Schwarzschild described numerical experiments that successfully reproduced most of the observed properties of the majority of stars seen in the sky. He also set the standard for a lucid description of the physics of stellar interiors. Ten years later, in 1968, John P. Cox's tw~volume monograph Principles of Stellar Structure appeared, as did the more specialized text Principles of Stellar Evolution and Nuc1eosynthesis by Donald D. Clayton-and what a difference ten years had made. The field had matured into the basic form that it remains today. The past twenty-plus years have seen this branch of astrophysics flourish and develop into a fundamental pillar of modern astrophysics that addresses an enormous variety of phenomena. In view of this it might seem foolish to offer another text of finite length and expect it to cover any more than a fraction of what should be discussed to make it a thorough and self-contained reference. Well, it doesn't. Our specific aim is to introduce only the fundamentals of stellar astrophysics. You will find little reference here to black holes, millisecond pulsars, and other "sexy" objects.

Fundamentals of Radio Astronomy

Fundamentals of Radio Astronomy
Author: Ronald L. Snell
Publisher: CRC Press
Total Pages: 346
Release: 2019-04-24
Genre: Science
ISBN: 0429649770

As demonstrated by five Nobel Prizes in physics, radio astronomy has contributed greatly to our understanding of the Universe. Courses covering this subject are, therefore, very important in the education of the next generation of scientists who will continue to explore the Cosmos. This textbook, the second of two volumes, presents an extensive introduction to the astrophysical processes that are studied in radio astronomy. Suitable for undergraduate courses on radio astronomy, it discusses the physical phenomena that give rise to radio emissions, presenting examples of astronomical objects, and illustrating how the relevant physical parameters of astronomical sources can be obtained from radio observations. Unlike other radio astronomy textbooks, this book provides students with an understanding of the background and the underlying principles, with derivations available for most of the equations used in the textbook. Features: Presents a clear and concise discussion of the important astronomical concepts and physical processes that give rise to both radio continuum and radio spectral line emission Discusses radio emissions from a variety of astronomical sources and shows how the observed emissions can be used to derive the physical properties of these sources Includes numerous examples using actual data from the literature

Astrophysics for Physicists

Astrophysics for Physicists
Author: Arnab Rai Choudhuri
Publisher: Cambridge University Press
Total Pages: 491
Release: 2010-03-11
Genre: Science
ISBN: 1139486918

Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals thoroughly, recent important discoveries are highlighted at every stage.

Fundamentals of Astrometry

Fundamentals of Astrometry
Author: Jean Kovalevsky
Publisher: Cambridge University Press
Total Pages: 422
Release: 2004-06-03
Genre: Science
ISBN: 9781139453172

Astrometry encompasses all that is necessary to provide the positions and motions of celestial bodies. This includes observational techniques, instrumentation, processing and analysis of observational data, reference systems and frames, and the resulting astronomical phenomena. Astrometry is fundamental to all other fields of astronomy, from the pointing of telescopes, to navigation and guidance systems, to distance and motion determinations for astrophysics. In the last few decades, new observational techniques have enabled improvements in accuracy by orders of magnitude. Starting from basic principles, this book provides the fundamentals for this new astrometry at milli- and micro-arcsecond accuracies. Topics include: basics of general relativity; co-ordinate systems; vectors, tensors, quaternions, and observational uncertainties; determination and use of the celestial and terrestrial reference systems and frames; applications of new observational techniques; present and future star catalogues and double star astrometry. This comprehensive reference will be invaluable for graduate students and research astronomers.

Essential Astrophysics

Essential Astrophysics
Author: Kenneth R. Lang
Publisher: Springer Science & Business Media
Total Pages: 651
Release: 2013-05-24
Genre: Science
ISBN: 3642359639

Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialised courses in the future. Astronomical examples are provided throughout the text, to reinforce the basic concepts and physics, and to demonstrate the use of the relevant formulae. In this way, the student learns to apply the fundamental equations and principles to cosmic objects and situations. Astronomical and physical constants and units as well as the most fundamental equations can be found in the appendix. Essential Astrophysics goes beyond the typical textbook by including references to the seminal papers in the field, with further reference to recent applications, results, or specialised literature.

An Introduction to Modern Astrophysics

An Introduction to Modern Astrophysics
Author: Bradley W.. Carroll
Publisher:
Total Pages: 1470
Release: 2013-07-23
Genre: Astrophysics
ISBN: 9781292022932

"An Introduction to Modern Astrophysics, "Second Edition has been thoroughly revised to reflect the dramatic changes and advancements in astrophysics that have occurred over the past decade. The Second Edition of this market-leading book has been updated to include the latest results from relevant fields of astrophysics and advances in our theoretical understanding of astrophysical phenomena. The Tools of Astronomy: The Celestial Sphere, Celestial Mechanics, The Continuous Spectrum of Light, The Theory of Special Relativity, The Interaction of Light and Matter, Telescopes; The Nature of Stars: Binary Systems and Stellar Parameters, The Classification of Stellar Spectra, Stellar Atmospheres, The Interiors of Stars, The Sun, The Process of Star Formation, Post-Main-Sequence Stellar Evolution, Stellar Pulsation, Supernovae, The Degenerate Remnants of Stars, Black Holes, Close Binary Star Systems; Planetary Systems: Physical Processes in the Solar System, The Terrestrial Planets, The Jovian Worlds, Minor Bodies of the Solar System, The Formation of Planetary Systems; Galaxies and the Universe: The Milky Way Galaxy, The Nature of Galaxies, Galactic Evolution, The Structure of the Universe, Active Galaxies, Cosmology, The Early Universe; Astronomical and Physical Constants, Unit Conversions Between SI and cgs, Solar System Data, The Constellations, The Brightest Stars, The Nearest Stars, Stellar Data, The Messier Catalog, Constants, A Constants Module for Fortran 95 (Available as a C++ header file), Orbits, A Planetary Orbit Code (Available as Fortran 95 and C++ command line versions, and Windows GUI), TwoStars, A Binary Star Code (Generates synthetic light and radial velocity curves; available as Fortran 95 and C++ command line versions, and Windows GUI), StatStar, A Stellar Structure Code (Available as Fortran 95 and C++ command line versions, and Windows GUI), StatStar, Stellar Models, Galaxy, A Tidal Interaction Code (Available as Java), WMAP Data. For all readers interested in moden astrophysics.