The Fractional Calculus Theory And Applications Of Differentiation And Integration To Arbitrary Order
Download The Fractional Calculus Theory And Applications Of Differentiation And Integration To Arbitrary Order full books in PDF, epub, and Kindle. Read online free The Fractional Calculus Theory And Applications Of Differentiation And Integration To Arbitrary Order ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : |
Publisher | : Elsevier |
Total Pages | : 252 |
Release | : 1974-09-05 |
Genre | : Mathematics |
ISBN | : 0080956203 |
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Author | : Varsha Daftardar-Gejji |
Publisher | : ALPHA SCIENCE INTERNATIONAL LIMITED |
Total Pages | : 232 |
Release | : 2013-07-26 |
Genre | : Mathematics |
ISBN | : 8184874782 |
FRACTIONAL CALCULUS: Theory and Applications deals with differentiation and integration of arbitrary order. The origin of this subject can be traced back to the end of seventeenth century, the time when Newton and Leibniz developed foundations of differential and integral calculus. Nonetheless, utility and applicability of FC to various branches of science and engineering have been realized only in last few decades. Recent years have witnessed tremendous upsurge in research activities related to the applications of FC in modeling of real-world systems. Unlike the derivatives of integral order, the non-local nature of fractional derivatives correctly models many natural phenomena containing long memory and give more accurate description than their integer counterparts.The present book comprises of contributions from academicians and leading researchers and gives a panoramic overview of various aspects of this subject: Introduction to Fractional Calculus Fractional Differential Equations Fractional Ordered Dynamical Systems Fractional Operators on Fractals Local Fractional Derivatives Fractional Control Systems Fractional Operators and Statistical Distributions Applications to Engineering
Author | : Richard Herrmann |
Publisher | : World Scientific |
Total Pages | : 274 |
Release | : 2011 |
Genre | : Science |
ISBN | : 9814340243 |
Fractional calculus is undergoing rapidly and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics. This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.
Author | : J. Sabatier |
Publisher | : Springer Science & Business Media |
Total Pages | : 550 |
Release | : 2007-07-28 |
Genre | : Technology & Engineering |
ISBN | : 1402060424 |
In the last two decades, fractional (or non integer) differentiation has played a very important role in various fields such as mechanics, electricity, chemistry, biology, economics, control theory and signal and image processing. For example, in the last three fields, some important considerations such as modelling, curve fitting, filtering, pattern recognition, edge detection, identification, stability, controllability, observability and robustness are now linked to long-range dependence phenomena. Similar progress has been made in other fields listed here. The scope of the book is thus to present the state of the art in the study of fractional systems and the application of fractional differentiation. As this volume covers recent applications of fractional calculus, it will be of interest to engineers, scientists, and applied mathematicians.
Author | : Rudolf Hilfer |
Publisher | : World Scientific |
Total Pages | : 473 |
Release | : 2000-03-02 |
Genre | : Science |
ISBN | : 9814496200 |
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Author | : Igor Podlubny |
Publisher | : Elsevier |
Total Pages | : 366 |
Release | : 1998-10-27 |
Genre | : Mathematics |
ISBN | : 0080531989 |
This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives
Author | : A.M. Mathai |
Publisher | : Springer Science & Business Media |
Total Pages | : 480 |
Release | : 2008-02-13 |
Genre | : Science |
ISBN | : 0387758941 |
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Author | : Vasily E. Tarasov |
Publisher | : Springer Science & Business Media |
Total Pages | : 504 |
Release | : 2011-01-04 |
Genre | : Science |
ISBN | : 3642140033 |
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.
Author | : Kenneth S. Miller |
Publisher | : Wiley-Interscience |
Total Pages | : 384 |
Release | : 1993-06-02 |
Genre | : Mathematics |
ISBN | : 9780471588849 |
Commences with the historical development of fractional calculus, its mathematical theory—particularly the Riemann-Liouville version. Numerous examples and theoretical applications of the theory are presented. Features topics associated with fractional differential equations. Discusses Weyl fractional calculus and some of its uses. Includes selected physical problems which lead to fractional differential or integral equations.
Author | : Kai Diethelm |
Publisher | : Springer |
Total Pages | : 251 |
Release | : 2010-08-18 |
Genre | : Mathematics |
ISBN | : 3642145744 |
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.