The Elements Of Stochastic Processes
Download The Elements Of Stochastic Processes full books in PDF, epub, and Kindle. Read online free The Elements Of Stochastic Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Norman T. J. Bailey |
Publisher | : John Wiley & Sons |
Total Pages | : 268 |
Release | : 1991-01-16 |
Genre | : Mathematics |
ISBN | : 9780471523680 |
Develops an introductory and relatively simple account of the theory and application of the evolutionary type of stochastic process. Professor Bailey adopts the heuristic approach of applied mathematics and develops both theoretical principles and applied techniques simultaneously.
Author | : C. DOUGLAS. HOWARD |
Publisher | : |
Total Pages | : |
Release | : 2017 |
Genre | : |
ISBN | : 9780979757679 |
Author | : U. Narayan Bhat |
Publisher | : Wiley-Interscience |
Total Pages | : 496 |
Release | : 2002-09-06 |
Genre | : Mathematics |
ISBN | : |
The third edition of this volume improves on the last edition by condensing the material and organizing it into a more teachable format. It provides more in-depth coverage of Markov chains and simple Markov process and gives added emphasis to statistical inference in stochastic processes.
Author | : Richard Durrett |
Publisher | : Springer |
Total Pages | : 282 |
Release | : 2016-11-07 |
Genre | : Mathematics |
ISBN | : 3319456148 |
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Author | : Mu-fa Chen |
Publisher | : World Scientific |
Total Pages | : 245 |
Release | : 2021-05-25 |
Genre | : Mathematics |
ISBN | : 9814740322 |
The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.
Author | : Guo-qiang Cai |
Publisher | : World Scientific Publishing Company |
Total Pages | : 552 |
Release | : 2016-08-11 |
Genre | : Technology & Engineering |
ISBN | : 9814723347 |
Stochastic dynamics has been a subject of interest since the early 20th Century. Since then, much progress has been made in this field of study, and many modern applications for it have been found in fields such as physics, chemistry, biology, ecology, economy, finance, and many branches of engineering including Mechanical, Ocean, Civil, Bio, and Earthquake Engineering.Elements of Stochastic Dynamics aims to meet the growing need to understand and master the subject by introducing fundamentals to researchers who want to explore stochastic dynamics in their fields and serving as a textbook for graduate students in various areas involving stochastic uncertainties. All topics within are presented from an application approach, and may thus be more appealing to users without a background in pure Mathematics. The book describes the basic concepts and theories of random variables and stochastic processes in detail; provides various solution procedures for systems subjected to stochastic excitations; introduces stochastic stability and bifurcation; and explores failures of stochastic systems. The book also incorporates some latest research results in modeling stochastic processes; in reducing the system degrees of freedom; and in solving nonlinear problems. The book also provides numerical simulation procedures of widely-used random variables and stochastic processes.A large number of exercise problems are included in the book to aid the understanding of the concepts and theories, and may be used for as course homework.
Author | : Oliver C. Ibe |
Publisher | : John Wiley & Sons |
Total Pages | : 280 |
Release | : 2013-08-29 |
Genre | : Mathematics |
ISBN | : 1118617932 |
Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.
Author | : Sidney I. Resnick |
Publisher | : Springer Science & Business Media |
Total Pages | : 640 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 1461203872 |
Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.
Author | : Samuel Karlin |
Publisher | : Academic Press |
Total Pages | : 577 |
Release | : 2012-12-02 |
Genre | : Mathematics |
ISBN | : 0080570410 |
The purpose, level, and style of this new edition conform to the tenets set forth in the original preface. The authors continue with their tack of developing simultaneously theory and applications, intertwined so that they refurbish and elucidate each other. The authors have made three main kinds of changes. First, they have enlarged on the topics treated in the first edition. Second, they have added many exercises and problems at the end of each chapter. Third, and most important, they have supplied, in new chapters, broad introductory discussions of several classes of stochastic processes not dealt with in the first edition, notably martingales, renewal and fluctuation phenomena associated with random sums, stationary stochastic processes, and diffusion theory.
Author | : Jyotiprasad Medhi |
Publisher | : New Age International |
Total Pages | : 664 |
Release | : 1994 |
Genre | : Procesos estocásticos |
ISBN | : 9788122405491 |
Aims At The Level Between That Of Elementary Probability Texts And Advanced Works On Stochastic Processes. The Pre-Requisites Are A Course On Elementary Probability Theory And Statistics, And A Course On Advanced Calculus. The Theoretical Results Developed Have Been Followed By A Large Number Of Illustrative Examples. These Have Been Supplemented By Numerous Exercises, Answers To Most Of Which Are Also Given. It Will Suit As A Text For Advanced Undergraduate, Postgraduate And Research Level Course In Applied Mathematics, Statistics, Operations Research, Computer Science, Different Branches Of Engineering, Telecommunications, Business And Management, Economics, Life Sciences And So On. A Review Of The Book In American Mathematical Monthly (December 82) Gives This Book Special Positive Emphasis As A Textbook As Follows: 'Of The Dozen Or More Texts Published In The Last Five Years Aimed At The Students With A Background Of A First Course In Probability And Statistics But Not Yet To Measure Theory, This Is The Clear Choice. An Extremely Well Organized, Lucidly Written Text With Numerous Problems, Examples And Reference T* (With T* Where T Denotes Textbook And * Denotes Special Positive Emphasis). The Current Enlarged And Revised Edition, While Retaining The Structure And Adhering To The Objective As Well As Philosophy Of The Earlier Edition, Removes The Deficiencies, Updates The Material And The References And Aims At A Border Perspective With Substantial Additions And Wider Coverage.