Young Children Reinvent Arithmetic

Young Children Reinvent Arithmetic
Author: Constance Kamii
Publisher: Teachers College Press
Total Pages: 394
Release: 1999
Genre: Education
ISBN: 0807776246

In this fully revised second edition of the classic Young Children Reinvent Arithmetic, Constance Kamii describes and develops an innovative program of teaching arithmetic in the early elementary grades. Kamii bases her educational strategies on renowned constructivist Jean Piaget's scientific ideas of how children develop logico-mathematical thinking. Written in collaboration with a classroom teacher, and premised upon the conviction that children are capable of much more than teachers and parents generally realize, the book provides a rich theoretical foundation and a compelling explanation of educational goals and objectives. Kamii calls attention to the ways in which traditional textbook-based teaching can be harmful to children’s development of numerical reasoning, and uses extensive research and classroom-tested studies to illuminate the efficacy of the approach. This book is full of practical suggestions and developmentally appropriate activities that can be used to stimulate numerical thinking among students of varying abilities and learning styles, both within and outside of the classroom. “In this new edition of her important book, Connie Kamii demonstrates scholarship not just in what she has written, but in her willingness to incorporate new ideas and findings. Many people update their books; few assiduously revise them, confronting what they believe to be past errors or gaps in their thinking. Such intellectual honesty, along with consistent connections between theory and practice, make this book a solid contribution to mathematics education of young children.” —Douglas Clements, State University of New York at Buffalo “The development of young children’s logico-mathematical knowledge is at the heart of this text. Similar to the first edition, this revision provides a rich theoretical foundation as well as child-centered activities and principles of teaching that support problem solving, communicating, reasoning, making connections, and representing mathematical ideas. In this great resource for preservice and in-service elementary teachers, Professor Kamii continues to help us understand the implications of Piagetian theory.” —Frances R. Curcio, New York University

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory
Author: Richard Friedberg
Publisher: Courier Corporation
Total Pages: 241
Release: 2012-07-06
Genre: Mathematics
ISBN: 0486152693

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Elements of Number Theory

Elements of Number Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2012-11-12
Genre: Mathematics
ISBN: 0387217355

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Computer Science with MATHEMATICA ®

Computer Science with MATHEMATICA ®
Author: Roman Maeder
Publisher: Cambridge University Press
Total Pages: 414
Release: 2000-02-28
Genre: Computers
ISBN: 9780521663953

This introductory course shows scientists and engineers how Mathematica can be used to do scientific computations.

A Book of Set Theory

A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 259
Release: 2014-07-23
Genre: Mathematics
ISBN: 0486497089

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--