The Electron Theory
Download The Electron Theory full books in PDF, epub, and Kindle. Read online free The Electron Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Uichiro Mizutani |
Publisher | : Cambridge University Press |
Total Pages | : 610 |
Release | : 2001-06-14 |
Genre | : Science |
ISBN | : 9780521587099 |
Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.
Author | : Owen Willans Richardson |
Publisher | : |
Total Pages | : 632 |
Release | : 1914 |
Genre | : Electrons |
ISBN | : |
Author | : Hendrik Antoon Lorentz |
Publisher | : |
Total Pages | : 360 |
Release | : 1916 |
Genre | : Electromagnetic theory |
ISBN | : |
Author | : Gabriele Giuliani |
Publisher | : Cambridge University Press |
Total Pages | : 779 |
Release | : 2008-06-19 |
Genre | : Science |
ISBN | : 1139471589 |
Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.
Author | : David Hestenes |
Publisher | : Springer Science & Business Media |
Total Pages | : 422 |
Release | : 1991-07-31 |
Genre | : Science |
ISBN | : 9780792313564 |
techniques, and raises new issues of physical interpretation as well as possibilities for deepening the theory. (3) Barut contributes a comprehensive review of his own ambitious program in electron theory and quantum electrodynamics. Barut's work is rich with ingenious ideas, and the interest it provokes among other theorists can be seen in the cri tique by Grandy. Cooperstock takes a much different approach to nonlinear field-electron coupling which leads him to conclusions about the size of the electron. (4) Capri and Bandrauk work within the standard framework of quantum electrodynamics. Bandrauk presents a valuable review of his theoretical approach to the striking new photoelectric phenomena in high intensity laser experiments. (5) Jung proposes a theory to merge the ideas of free-free transitions and of scattering chaos, which is becoming increasingly important in the theoretical analysis of nonlinear optical phenomena. For the last half century the properties of electrons have been probed primarily by scattering experiments at ever higher energies. Recently, however, two powerful new experimental techniques have emerged capable of giving alternative experimental views of the electron. We refer to (1) the confinement of single electrons for long term study, and (2) the interaction of electrons with high intensity laser fields. Articles by outstanding practitioners of both techniques are included in Part II of these Proceedings. The precision experiments on trapped electrons by the Washington group quoted above have already led to a Nobel prize for the most accurate measurements of the electron magnetic moment.
Author | : John Stringer |
Publisher | : Elsevier |
Total Pages | : 257 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 148313671X |
An Introduction to the Electron Theory of Solids introduces the reader to the electron theory of solids. Topics covered range from the breakdown of classical theory to atomic spectra and the old quantum theory, as well as the uncertainty principle of Heisenberg and the foundations of quantum mechanics. Some problems in wave mechanics and a wave-mechanical treatment of the simple harmonic oscillator and the hydrogen atom are also presented. Comprised of 12 chapters, this book begins with an introduction to Isaac Newton's theory of classical mechanics and how the scientists after him discounted his ideas. The discussion then turns to the spectrum of atomic hydrogen and the old quantum theory; Heisenberg's uncertainty principle and the consequences of wave-particle duality; the foundations of quantum mechanics; and assemblies of atoms. Atoms in motion and statistical mechanics are also considered, along with simple models of metals and the band theory of solids. The final chapter presents some results of band theory, with particular reference to thermal ionization of impurity atoms and conductivity of metals. This monograph is primarily intended for students of any discipline.
Author | : Stanley Raimes |
Publisher | : North-Holland |
Total Pages | : 292 |
Release | : 1972 |
Genre | : Science |
ISBN | : |
Author | : Philip G. Burke |
Publisher | : Springer Science & Business Media |
Total Pages | : 264 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 1489915672 |
The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.
Author | : Josef M. Jauch |
Publisher | : Springer Science & Business Media |
Total Pages | : 569 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642809510 |
Since the discovery of the corpuscular nature of radiation by Planck more than fifty years ago the quantum theory of radiation has gone through many stages of development which seemed to alternate between spectacular success and hopeless frustration. The most recent phase started in 1947 with the discovery of the electromagnetic level shifts and the realization that the exist ing theory, when properly interpreted, was perfectly adequate to explain these effects to an apparently unlimited degree of accuracy. This phase has now reached a certain conclusion: for the first time in the checkered history of this field of research it has become possible to give a unified and consistent presen tation of radiation theory in full conformity with the principles of relativity and quantum mechanics. To this task the present book is devoted. The plan for a book of this type was conceived during the year 1951 while the first-named author (J. M. J. ) held a Fulbright research scholarship at Cambridge University. During this year of freedom from teaching and other duties he had the opportunity of conferring with physicists in many different countries on the recent developments in radiation theory. The comments seemed to be almost unanimous that a book on quantum electrodynamics at the present time would be of inestimable value to physicists in many parts of the world. However, it was not until the spring of 1952 that work on the book began in earnest.
Author | : Richard M. Martin |
Publisher | : Cambridge University Press |
Total Pages | : 843 |
Release | : 2016-06-30 |
Genre | : Science |
ISBN | : 1316558568 |
Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.