The Discrepancy Method

The Discrepancy Method
Author: Bernard Chazelle
Publisher: Cambridge University Press
Total Pages: 500
Release: 2000
Genre: Computers
ISBN: 9780521003575

The discrepancy method is the glue that binds randomness and complexity. It is the bridge between randomized computation and discrepancy theory, the area of mathematics concerned with irregularities in distributions. The discrepancy method has played a major role in complexity theory; in particular, it has caused a mini-revolution of sorts in computational geometry. This book tells the story of the discrepancy method in a few short independent vignettes. It is a varied tale which includes such topics as communication complexity, pseudo-randomness, rapidly mixing Markov chains, points on the sphere and modular forms, derandomization, convex hulls, Voronoi diagrams, linear programming and extensions, geometric sampling, VC-dimension theory, minimum spanning trees, linear circuit complexity, and multidimensional searching. The mathematical treatment is thorough and self-contained. In particular, background material in discrepancy theory is supplied as needed. Thus the book should appeal to students and researchers in computer science, operations research, pure and applied mathematics, and engineering.

Geometric Discrepancy

Geometric Discrepancy
Author: Jiri Matousek
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 1999-05-19
Genre: Mathematics
ISBN: 9783540655282

What is the "most uniform" way of distributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? This book is an accessible and lively introduction to the area of geometric discrepancy theory, with numerous exercises and illustrations. In separate, more specialized parts, it also provides a comprehensive guide to recent research.

The Probabilistic Method

The Probabilistic Method
Author: Noga Alon
Publisher: John Wiley & Sons
Total Pages: 396
Release: 2015-11-02
Genre: Mathematics
ISBN: 1119062071

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

The Simplex Method

The Simplex Method
Author: Karl Heinz Borgwardt
Publisher: Springer Science & Business Media
Total Pages: 279
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642615783

For more than 35 years now, George B. Dantzig's Simplex-Method has been the most efficient mathematical tool for solving linear programming problems. It is proba bly that mathematical algorithm for which the most computation time on computers is spent. This fact explains the great interest of experts and of the public to understand the method and its efficiency. But there are linear programming problems which will not be solved by a given variant of the Simplex-Method in an acceptable time. The discrepancy between this (negative) theoretical result and the good practical behaviour of the method has caused a great fascination for many years. While the "worst-case analysis" of some variants of the method shows that this is not a "good" algorithm in the usual sense of complexity theory, it seems to be useful to apply other criteria for a judgement concerning the quality of the algorithm. One of these criteria is the average computation time, which amounts to an anal ysis of the average number of elementary arithmetic computations and of the number of pivot steps. A rigid analysis of the average behaviour may be very helpful for the decision which algorithm and which variant shall be used in practical applications. The subject and purpose of this book is to explain the great efficiency in prac tice by assuming certain distributions on the "real-world" -problems. Other stochastic models are realistic as well and so this analysis should be considered as one of many possibilities.

Learning disabilities screening and evaluation guide for low- and middle-income countries

Learning disabilities screening and evaluation guide for low- and middle-income countries
Author: Anne M. Hayes
Publisher: RTI Press
Total Pages: 50
Release: 2018-04-29
Genre: Education
ISBN:

Learning disabilities are among the most common disabilities experienced in childhood and adulthood. Although identifying learning disabilities in a school setting is a complex process, it is particularly challenging in low- and middle-income countries that lack the appropriate resources, tools, and supports. This guide provides an introduction to learning disabilities and describes the processes and practices that are necessary for the identification process. It also describes a phased approach that countries can use to assess their current screening and evaluation services, as well as determine the steps needed to develop, strengthen, and build systems that support students with learning disabilities. This guide also provides intervention recommendations that teachers and school administrators can implement at each phase of system development. Although this guide primarily addresses learning disabilities, the practices, processes, and systems described may be also used to improve the identification of other disabilities commonly encountered in schools.

Random Number Generation and Quasi-Monte Carlo Methods

Random Number Generation and Quasi-Monte Carlo Methods
Author: Harald Niederreiter
Publisher: SIAM
Total Pages: 247
Release: 1992-01-01
Genre: Mathematics
ISBN: 9781611970081

Tremendous progress has taken place in the related areas of uniform pseudorandom number generation and quasi-Monte Carlo methods in the last five years. This volume contains recent important work in these two areas, and stresses the interplay between them. Some developments contained here have never before appeared in book form. Includes the discussion of the integrated treatment of pseudorandom numbers and quasi-Monte Carlo methods; the systematic development of the theory of lattice rules and the theory of nets and (t,s)-sequences; the construction of new and better low-discrepancy point sets and sequences; Nonlinear congruential methods; the initiation of a systematic study of methods for pseudorandom vector generation; and shift-register pseudorandom numbers. Based on a series of 10 lectures presented by the author at a CBMS-NSF Regional Conference at the University of Alaska at Fairbanks in 1990 to a selected group of researchers, this volume includes background material to make the information more accessible to nonspecialists.

Computational Complexity

Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
Total Pages: 609
Release: 2009-04-20
Genre: Computers
ISBN: 0521424267

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Iterative Methods in Combinatorial Optimization

Iterative Methods in Combinatorial Optimization
Author: Lap Chi Lau
Publisher: Cambridge University Press
Total Pages: 255
Release: 2011-04-18
Genre: Computers
ISBN: 1139499394

With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.

Interpretable Machine Learning

Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
Total Pages: 320
Release: 2020
Genre: Artificial intelligence
ISBN: 0244768528

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition
Author: Stef van Buuren
Publisher: CRC Press
Total Pages: 444
Release: 2018-07-17
Genre: Mathematics
ISBN: 0429960352

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.