The Data Catalog

The Data Catalog
Author: Bonnie O'Neil
Publisher: Technics Publications
Total Pages: 350
Release: 2020-03-16
Genre:
ISBN: 9781634627870

Apply this definitive guide to data catalogs and select the feature set needed to empower your data citizens in their quest for faster time to insight. The data catalog may be the most important breakthrough in data management in the last decade, ranking alongside the advent of the data warehouse. The latter enabled business consumers to conduct their own analyses to obtain insights themselves. The data catalog is the next wave of this, empowering business users even further to drastically reduce time to insight, despite the rising tide of data flooding the enterprise. Use this book as a guide to provide a broad overview of the most popular Machine Learning (ML) data catalog products, and perform due diligence using the extensive features list. Consider graphical user interface (GUI) design issues such as layout and navigation, as well as scalability in terms of how the catalog will handle your current and anticipated data and metadata needs. ONeil & Frymanpresent a typology which ranges from products that focus on data lineage, curation and search, data governance, data preparation, and of course, the core capability of finding and understanding the data. The authors emphasize that machine learning is being adopted in many of these products, enabling a more elegant data democratization solution in the face of the burgeoning mountain of data that is engulfing organizations. Derek Strauss, Chairman/CEO, Gavroshe, and Former CDO, TD Ameritrade. This book is organized into three sections: Chapters 1 and 2 reveal the rationale for a data catalog and share how data scientists, data administrators, and curators fare with and without a data catalog; Chapters 3-10 present the many different types of data catalogs; Chapters 11 and 12 provide an extensive features list, current trends, and visions for the future.

The Enterprise Data Catalog

The Enterprise Data Catalog
Author: Ole Olesen-Bagneux
Publisher: "O'Reilly Media, Inc."
Total Pages: 222
Release: 2023-02-15
Genre: Computers
ISBN: 1492098671

Combing the web is simple, but how do you search for data at work? It's difficult and time-consuming, and can sometimes seem impossible. This book introduces a practical solution: the data catalog. Data analysts, data scientists, and data engineers will learn how to create true data discovery in their organizations, making the catalog a key enabler for data-driven innovation and data governance. Author Ole Olesen-Bagneux explains the benefits of implementing a data catalog. You'll learn how to organize data for your catalog, search for what you need, and manage data within the catalog. Written from a data management perspective and from a library and information science perspective, this book helps you: Learn what a data catalog is and how it can help your organization Organize data and its sources into domains and describe them with metadata Search data using very simple-to-complex search techniques and learn to browse in domains, data lineage, and graphs Manage the data in your company via a data catalog Implement a data catalog in a way that exactly matches the strategic priorities of your organization Understand what the future has in store for data catalogs

The Self-Service Data Roadmap

The Self-Service Data Roadmap
Author: Sandeep Uttamchandani
Publisher: "O'Reilly Media, Inc."
Total Pages: 297
Release: 2020-09-10
Genre: Computers
ISBN: 1492075205

Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization

Non-Invasive Data Governance

Non-Invasive Data Governance
Author: Robert S. Seiner
Publisher: Technics Publications
Total Pages: 147
Release: 2014-09-01
Genre: Computers
ISBN: 1634620453

Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.

Refactoring Databases

Refactoring Databases
Author: Scott W. Ambler
Publisher: Pearson Education
Total Pages: 554
Release: 2006-03-03
Genre: Computers
ISBN: 0321630173

Refactoring has proven its value in a wide range of development projects–helping software professionals improve system designs, maintainability, extensibility, and performance. Now, for the first time, leading agile methodologist Scott Ambler and renowned consultant Pramodkumar Sadalage introduce powerful refactoring techniques specifically designed for database systems. Ambler and Sadalage demonstrate how small changes to table structures, data, stored procedures, and triggers can significantly enhance virtually any database design–without changing semantics. You’ll learn how to evolve database schemas in step with source code–and become far more effective in projects relying on iterative, agile methodologies. This comprehensive guide and reference helps you overcome the practical obstacles to refactoring real-world databases by covering every fundamental concept underlying database refactoring. Using start-to-finish examples, the authors walk you through refactoring simple standalone database applications as well as sophisticated multi-application scenarios. You’ll master every task involved in refactoring database schemas, and discover best practices for deploying refactorings in even the most complex production environments. The second half of this book systematically covers five major categories of database refactorings. You’ll learn how to use refactoring to enhance database structure, data quality, and referential integrity; and how to refactor both architectures and methods. This book provides an extensive set of examples built with Oracle and Java and easily adaptable for other languages, such as C#, C++, or VB.NET, and other databases, such as DB2, SQL Server, MySQL, and Sybase. Using this book’s techniques and examples, you can reduce waste, rework, risk, and cost–and build database systems capable of evolving smoothly, far into the future.

Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

Towards Interoperable Research Infrastructures for Environmental and Earth Sciences
Author: Zhiming Zhao
Publisher: Springer Nature
Total Pages: 375
Release: 2020-07-24
Genre: Computers
ISBN: 3030528294

This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions.

Mastering Azure Analytics

Mastering Azure Analytics
Author: Zoiner Tejada
Publisher: "O'Reilly Media, Inc."
Total Pages: 411
Release: 2017-04-06
Genre: Computers
ISBN: 1491956623

Helps users understand the breadth of Azure services by organizing them into a reference framework they can use when crafting their own big-data analytics solution.

Data Governance

Data Governance
Author: Evren Eryurek
Publisher:
Total Pages: 300
Release: 2021-04-13
Genre:
ISBN: 9781492063490

As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness