The Cauchy Problem in Kinetic Theory

The Cauchy Problem in Kinetic Theory
Author: Robert T. Glassey
Publisher: SIAM
Total Pages: 254
Release: 1996-01-01
Genre: Science
ISBN: 9781611971477

This volume studies the basic equations of kinetic theory in all of space. It contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations, including the Boltzmann equation (from rarefied gas dynamics) and the Vlasov-Poisson/Vlasov-Maxwell systems (from plasma physics). This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although these equations describe very different phenomena, they share the same streaming term. The author proves that solutions starting from a given configuration at an initial time exist for all future times by imposing appropriate hypotheses on the initial values in several important cases. He emphasizes those questions that a mathematician would ask first: Is there a solution to this problem? Is it unique? Can it be numerically approximated? The topics treated include the study of the Boltzmann collision operator, the study of the initial-value problem for the Boltzmann equation with "small" and "near equilibrium" data, global smooth solvability of the initial-value problem for the Vlasov-Poisson system with smooth initial data of unrestricted size, conditions under which the initial-value problem for the Vlasov-Maxwell system has global-in-time solutions (in both the smooth and weak senses), and more.

The Cauchy Problem in Kinetic Theory

The Cauchy Problem in Kinetic Theory
Author: Robert T. Glassey
Publisher: SIAM
Total Pages: 246
Release: 1996-01-01
Genre: Science
ISBN: 0898713676

Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.

Generalized Kinetic Models In Applied Sciences: Lecture Notes On Mathematical Problems

Generalized Kinetic Models In Applied Sciences: Lecture Notes On Mathematical Problems
Author: Luisa Arlotti
Publisher: World Scientific Publishing Company
Total Pages: 220
Release: 2003-08-12
Genre: Mathematics
ISBN: 9813106174

This book deals with analytic problems related to some developments and generalizations of the Boltzmann equation toward the modeling and qualitative analysis of large systems that are of interest in applied sciences. These generalizations are documented in the various surveys edited by Bellomo and Pulvirenti with reference to models of granular media, traffic flow, mathematical biology, communication networks, and coagulation models.The above literature motivates applied mathematicians to study the Cauchy problem and to develop an asymptotic analysis for models regarded as developments of the Boltzmann equation. This book aims to initiate the research plan by the analyzing afore mentioned analysis problems.The first generalization dealt with refers to the averaged Boltzmann equation, which is obtained by suitable averaging of the distribution function of the field particles into the action domain of the test particle. This model is further developed to describe equations with dissipative collisions and a class of models that are of interest in mathematical biology. In this latter case the state of the particles is defined not only by a mechanical variable but also by a biological microscopic state.The book is essentially devoted to analytic aspects and deals with the analysis of the Cauchy problem and with the development of an asymptotic theory to obtain the macroscopic description from the mesoscopic one.

Relativistic Kinetic Theory

Relativistic Kinetic Theory
Author: Gregory V. Vereshchagin
Publisher: Cambridge University Press
Total Pages: 343
Release: 2017-02-16
Genre: Science
ISBN: 1316982564

Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.

On the Topology and Future Stability of the Universe

On the Topology and Future Stability of the Universe
Author: Hans Ringström
Publisher: OUP Oxford
Total Pages: 733
Release: 2013-05-23
Genre: Science
ISBN: 0199680299

A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.

Mathematical Topics In Nonlinear Kinetic Theory

Mathematical Topics In Nonlinear Kinetic Theory
Author: Nicola Bellomo
Publisher: World Scientific
Total Pages: 245
Release: 1989-01-01
Genre: Mathematics
ISBN: 9814507482

This book has the aim of dealing with the Nonlinear evolution problems related to the spatially dependent Boltzmann and Enskog equations.

Boundary Value Problems in Abstract Kinetic Theory

Boundary Value Problems in Abstract Kinetic Theory
Author: W. Greenberg
Publisher: Birkhäuser
Total Pages: 536
Release: 2013-12-14
Genre: Science
ISBN: 3034854781

This monograph is intended to be a reasonably self -contained and fairly complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract kinetic equations refer to (an abstract formulation of) equations which describe transport of particles, momentum, energy, or, indeed, any transportable physical quantity. These include the equations of traditional (neutron) transport theory, radiative transfer, and rarefied gas dynamics, as well as a plethora of additional applications in various areas of physics, chemistry, biology and engineering. The mathematical problems addressed within the monograph deal with existence and uniqueness of solutions of initial-boundary value problems, as well as questions of positivity, continuity, growth, stability, explicit representation of solutions, and equivalence of various formulations of the transport equations under consideration. The reader is assumed to have a certain familiarity with elementary aspects of functional analysis, especially basic semigroup theory, and an effort is made to outline any more specialized topics as they are introduced. Over the past several years there has been substantial progress in developing an abstract mathematical framework for treating linear transport problems. The benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has been established for a variety of problems which were traditionally treated by somewhat heuristic distribution theory methods; and (ii) the results obtained are applicable to a great variety of disparate kinetic processes. Thus, numerous different systems of integrodifferential equations which model a variety of kinetic processes are themselves modelled by an abstract operator equation on a Hilbert (or Banach) space.

On the Cauchy Problem

On the Cauchy Problem
Author: Sigeru Mizohata
Publisher: Academic Press
Total Pages: 186
Release: 2014-05-10
Genre: Mathematics
ISBN: 148326906X

Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.

Kinetic Boltzmann, Vlasov and Related Equations

Kinetic Boltzmann, Vlasov and Related Equations
Author: Alexander Sinitsyn
Publisher: Elsevier
Total Pages: 321
Release: 2011-06-17
Genre: Mathematics
ISBN: 0123877806

Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions

Recent Advances in Nonlinear Partial Differential Equations and Applications

Recent Advances in Nonlinear Partial Differential Equations and Applications
Author: Luis López Bonilla
Publisher: American Mathematical Soc.
Total Pages: 250
Release: 2007
Genre: Mathematics
ISBN: 0821842110

The articles of this book are written by leading experts in partial differential equations and their applications, who present overviews here of recent advances in this broad area of mathematics. The formation of shocks in fluids, modern numerical computation of turbulence, the breaking of the Einstein equations in a vacuum, the dynamics of defects in crystals, effects due to entropy in hyperbolic conservation laws, the Navier-Stokes and other limits of the Boltzmann equation, occupancy times for Brownian motion in a two dimensional wedge, and new methods of analyzing and solving integrable systems are some of this volume's subjects. The reader will find an exposition of important advances without a lot of technicalities and with an emphasis on the basic ideas of this field.