The Bootstrap Accuracy
Download The Bootstrap Accuracy full books in PDF, epub, and Kindle. Read online free The Bootstrap Accuracy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bradley Efron |
Publisher | : CRC Press |
Total Pages | : 456 |
Release | : 1994-05-15 |
Genre | : Mathematics |
ISBN | : 9780412042317 |
Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
Author | : A. C. Davison |
Publisher | : Cambridge University Press |
Total Pages | : 606 |
Release | : 1997-10-28 |
Genre | : Computers |
ISBN | : 9780521574716 |
Disk contains the library functions and documentation for use with Splus for Windows.
Author | : Bradley Efron |
Publisher | : SIAM |
Total Pages | : 99 |
Release | : 1982-01-01 |
Genre | : Computers |
ISBN | : 9781611970319 |
The jackknife and the bootstrap are nonparametric methods for assessing the errors in a statistical estimation problem. They provide several advantages over the traditional parametric approach: the methods are easy to describe and they apply to arbitrarily complicated situations; distribution assumptions, such as normality, are never made. This monograph connects the jackknife, the bootstrap, and many other related ideas such as cross-validation, random subsampling, and balanced repeated replications into a unified exposition. The theoretical development is at an easy mathematical level and is supplemented by a large number of numerical examples. The methods described in this monograph form a useful set of tools for the applied statistician. They are particularly useful in problem areas where complicated data structures are common, for example, in censoring, missing data, and highly multivariate situations.
Author | : Michael R. Chernick |
Publisher | : John Wiley & Sons |
Total Pages | : 337 |
Release | : 2011-09-23 |
Genre | : Mathematics |
ISBN | : 1118211596 |
A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.
Author | : John Fox |
Publisher | : SAGE Publications |
Total Pages | : 612 |
Release | : 2015-03-18 |
Genre | : Social Science |
ISBN | : 1483321312 |
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Author | : Christopher Z. Mooney |
Publisher | : SAGE |
Total Pages | : 84 |
Release | : 1993-08-09 |
Genre | : Philosophy |
ISBN | : 9780803953819 |
"This book is. . . clear and well-written. . . anyone with any interest in the basis of quantitative analysis simply must read this book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Using real data examples, this volume shows how to apply bootstrapping when the underlying sampling distribution of a statistic cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, it discusses the advantages and limitations of four bootstrap confidence interval methods--normal approximation, percentile, bias-corrected percentile, and percentile-t. The book concludes with a convenient summary of how to apply this computer-intensive methodology using various available software packages.
Author | : Gareth James |
Publisher | : Springer Nature |
Total Pages | : 617 |
Release | : 2023-08-01 |
Genre | : Mathematics |
ISBN | : 3031387473 |
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author | : Enno Mammen |
Publisher | : Springer Science & Business Media |
Total Pages | : 205 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461229502 |
Author | : Bradley Efron |
Publisher | : |
Total Pages | : 13 |
Release | : 2003 |
Genre | : |
ISBN | : |
Author | : David S. Moore |
Publisher | : W. H. Freeman |
Total Pages | : 74 |
Release | : 2003-03-10 |
Genre | : Business & Economics |
ISBN | : 9780716757269 |