The Bayesian Way
Download The Bayesian Way full books in PDF, epub, and Kindle. Read online free The Bayesian Way ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Will Kurt |
Publisher | : No Starch Press |
Total Pages | : 258 |
Release | : 2019-07-09 |
Genre | : Mathematics |
ISBN | : 1593279566 |
Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.
Author | : Svein Olav Nyberg |
Publisher | : John Wiley & Sons |
Total Pages | : 510 |
Release | : 2018-07-27 |
Genre | : Mathematics |
ISBN | : 111924689X |
A comprehensive resource that offers an introduction to statistics with a Bayesian angle, for students of professional disciplines like engineering and economics The Bayesian Way offers a basic introduction to statistics that emphasizes the Bayesian approach and is designed for use by those studying professional disciplines like engineering and economics. In addition to the Bayesian approach, the author includes the most common techniques of the frequentist approach. Throughout the text, the author covers statistics from a basic to a professional working level along with a practical understanding of the matter at hand. Filled with helpful illustrations, this comprehensive text explores a wide range of topics, starting with descriptive statistics, set theory, and combinatorics. The text then goes on to review fundamental probability theory and Bayes' theorem. The first part ends in an exposition of stochastic variables, exploring discrete, continuous and mixed probability distributions. In the second part, the book looks at statistical inference. Primarily Bayesian, but with the main frequentist techniques included, it covers conjugate priors through the powerful yet simple method of hyperparameters. It then goes on to topics in hypothesis testing (including utility functions), point and interval estimates (including frequentist confidence intervals), and linear regression. This book: Explains basic statistics concepts in accessible terms and uses an abundance of illustrations to enhance visual understanding Has guides for how to calculate the different probability distributions, functions , and statistical properties, on platforms like popular pocket calculators and Mathematica / Wolfram Alpha Includes example-proofs that enable the reader to follow the reasoning Contains assignments at different levels of difficulty from simply filling out the correct formula to the complex multi-step text assignments Offers information on continuous, discrete and mixed probability distributions, hypothesis testing, credible and confidence intervals, and linear regression Written for undergraduate and graduate students of subjects where Bayesian statistics are applied, including engineering, economics, and related fields, The Bayesian Way: With Applications in Engineering and Economics offers a clear understanding of Bayesian statistics that have real-world applications.
Author | : Jeff Gill |
Publisher | : CRC Press |
Total Pages | : 696 |
Release | : 2007-11-26 |
Genre | : Mathematics |
ISBN | : 1584885629 |
The first edition of Bayesian Methods: A Social and Behavioral Sciences Approach helped pave the way for Bayesian approaches to become more prominent in social science methodology. While the focus remains on practical modeling and basic theory as well as on intuitive explanations and derivations without skipping steps, this second edition incorporates the latest methodology and recent changes in software offerings. New to the Second Edition Two chapters on Markov chain Monte Carlo (MCMC) that cover ergodicity, convergence, mixing, simulated annealing, reversible jump MCMC, and coupling Expanded coverage of Bayesian linear and hierarchical models More technical and philosophical details on prior distributions A dedicated R package (BaM) with data and code for the examples as well as a set of functions for practical purposes such as calculating highest posterior density (HPD) intervals Requiring only a basic working knowledge of linear algebra and calculus, this text is one of the few to offer a graduate-level introduction to Bayesian statistics for social scientists. It first introduces Bayesian statistics and inference, before moving on to assess model quality and fit. Subsequent chapters examine hierarchical models within a Bayesian context and explore MCMC techniques and other numerical methods. Concentrating on practical computing issues, the author includes specific details for Bayesian model building and testing and uses the R and BUGS software for examples and exercises.
Author | : Jean-Michel Marin |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2007-02-06 |
Genre | : Computers |
ISBN | : 0387389792 |
This Bayesian modeling book provides the perfect entry for gaining a practical understanding of Bayesian methodology. It focuses on standard statistical models and is backed up by discussed real datasets available from the book website.
Author | : Andrew Gelman |
Publisher | : CRC Press |
Total Pages | : 677 |
Release | : 2013-11-01 |
Genre | : Mathematics |
ISBN | : 1439840954 |
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Author | : Therese M. Donovan |
Publisher | : Oxford University Press, USA |
Total Pages | : 430 |
Release | : 2019 |
Genre | : Mathematics |
ISBN | : 0198841299 |
This is an entry-level book on Bayesian statistics written in a casual, and conversational tone. The authors walk a reader through many sample problems step-by-step to provide those with little background in math or statistics with the vocabulary, notation, and understanding of the calculations used in many Bayesian problems.
Author | : S. James Press |
Publisher | : Courier Dover Publications |
Total Pages | : 292 |
Release | : 2016-02-17 |
Genre | : Mathematics |
ISBN | : 0486810453 |
Intriguing examination of works by Aristotle, Galileo, Newton, Pasteur, Einstein, Margaret Mead, and other scientists in terms of subjectivity and the Bayesian approach to statistical analysis. "An insightful work." — Choice. 2001 edition.
Author | : Cameron Davidson-Pilon |
Publisher | : Addison-Wesley Professional |
Total Pages | : 551 |
Release | : 2015-09-30 |
Genre | : Computers |
ISBN | : 0133902927 |
Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Author | : Devinderjit Sivia |
Publisher | : OUP Oxford |
Total Pages | : 259 |
Release | : 2006-06-02 |
Genre | : Mathematics |
ISBN | : 0191546704 |
One of the strengths of this book is the author's ability to motivate the use of Bayesian methods through simple yet effective examples. - Katie St. Clair MAA Reviews.
Author | : Jeff Gill |
Publisher | : CRC Press |
Total Pages | : 689 |
Release | : 2014-12-11 |
Genre | : Mathematics |
ISBN | : 1439862494 |
An Update of the Most Popular Graduate-Level Introductions to Bayesian Statistics for Social ScientistsNow that Bayesian modeling has become standard, MCMC is well understood and trusted, and computing power continues to increase, Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition focuses more on implementation details of th