Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces
Author: Anders Nilsson
Publisher: Elsevier
Total Pages: 533
Release: 2011-08-11
Genre: Science
ISBN: 0080551912

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces

Principles of Biology

Principles of Biology
Author: Lisa Bartee
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN: 9781636350417

The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.

Chemistry 2e

Chemistry 2e
Author: Paul Flowers
Publisher:
Total Pages: 0
Release: 2019-02-14
Genre:
ISBN: 9781951693008

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.

Second Quantized Approach to Quantum Chemistry

Second Quantized Approach to Quantum Chemistry
Author: Peter R. Surjan
Publisher: Springer Science & Business Media
Total Pages: 197
Release: 2012-12-06
Genre: Science
ISBN: 3642747558

The aim of this book is to give a simple, short, and elementary introduction to the second quantized formalism as applied to a many-electron system. It is intended for those, mainly chemists, who are familiar with traditional quantum chemistry but have not yet become acquainted with second quantization. The treatment is, in part, based on a series of seminars held by the author on the subject. It has been realized that many quantum chemists either interested in theory or in applications, being educated as chemi~ts and not as physicists, have never devoted themselves to taking a course on the second quantized approach. Most available textbooks on this topic are not very easy to follow for those who are not trained in theory, or they are not detailed enough to offer a comprehensive treatment. At the same time there are several papers in quantum chemical literature which take advantage of using second quantization, and it would be worthwhile if those papers were accessible for a wider reading public. For this reason, it is intended in this survey to review the basic formalism of second quantization, and to treat some selected chapters of quantum chemistry in this language. Most derivations will be carried out in a detailed manner, so the reader need not accept gaps to understand the result.

The Chemical Bond in Inorganic Chemistry

The Chemical Bond in Inorganic Chemistry
Author: Ian David Brown
Publisher:
Total Pages: 289
Release: 2002
Genre: Science
ISBN: 0198508700

This book describes the bond valence model, a description of acid-base bonding which is becoming increasingly popular particularly in fields such as materials science and mineralogy where solid state inorganic chemistry is important. Recent improvements in crystal structure determination have allowed the model to become more quantitative. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and can be used for analysing crystal structures and the conceptual modelling of local as well as extended structures. This is the first book to explore in depth the theoretical basis of the model and to show how it can be applied to synthetic and solution chemistry. It emphasizes the separate roles of the constraints of chemistry and of three-dimensional space by analysing the chemistry of solids. Many applications of the model in physics, materials science, chemistry, mineralogy, soil science, surface science, and molecular biology are reviewed. The final chapter describes how the bond valence model relates to and represents a simplification of other models of inorganic chemical bonding.

Understanding Hydrogen Bonds

Understanding Hydrogen Bonds
Author: Sławomir J Grabowski
Publisher: Royal Society of Chemistry
Total Pages: 487
Release: 2020-11-13
Genre: Science
ISBN: 183916042X

Hydrogen bonded systems play an important role in all aspects of science but particularly chemistry and biology. Notably, the helical structure of DNA is heavily reliant on the hydrogens bonds between the DNA base pairs. Although the area of hydrogen bonding is one that is well established, our understanding has continued to develop as the power of both computational and experimental techniques has improved. Understanding Hydrogen Bonds presents an up-to-date overview of our theoretical and experimental understanding of the hydrogen bond. Well-established and novel approaches are discussed, including quantum theory of ‘atoms in molecules’ (QTAIM); the electron localization function (ELF) method and Car–Parinnello molecular dynamics; the natural bond orbital (NBO) approach; and X-ray and neutron diffraction and spectroscopy. The mechanism of hydrogen bond formation is described and comparisons are made between hydrogen bonds and other types of interaction. The author also takes a look at new types of interaction that may be classified as hydrogen bonds with a focus on those with multicentre proton acceptors or with multicentre proton donors. Understanding Hydrogen Bonds is a valuable reference for experimentalists and theoreticians interested in updating their understanding of the types of hydrogen bonds, their role in chemistry and biology, and how they can be studied.

Structure and Bonding in crystals

Structure and Bonding in crystals
Author: Alexandra Nsvrotsky
Publisher: Elsevier
Total Pages: 376
Release: 2012-12-02
Genre: Science
ISBN: 0323153437

Structure and Bonding in Crystals, Volume II discusses the factors determining crystal structure. This book examines the principles of structure and bonding in complex solids. Divided into 13 parts, this volume begins with an overview of the development of atomic pseudopotentials and the discovery that they could be applied directly to atoms in crystals. This book then provides an understanding of other relevant topics, including ionic radii, bond strength, and bond length. Other chapters focus on the problems of classifying complex solids and describe the relationship between their structures. This text also describes the alloy structure to help know how compounds react or transform. This book further explores the geometrical relationships between different structure types in crystals. The final chapter deals with the contribution of Mooser and Pearson in the study of energy-band theory and chemical bonding. Solid-state physicists and chemists, geophysicists, metallurgists, and ceramists will find this book extremely useful.

University Physics

University Physics
Author: OpenStax
Publisher:
Total Pages: 622
Release: 2016-11-04
Genre: Science
ISBN: 9781680920451

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.

Structure and Bonding

Structure and Bonding
Author: Jack Barrett
Publisher: Royal Society of Chemistry
Total Pages: 196
Release: 2001
Genre: Education
ISBN: 9780854046478

Structure and Bonding covers introductory atomic and molecular theory as given in first and second year undergraduate courses at university level. This book explains in non-mathematical terms where possible, the factors that govern covalent bond formation, the lengths and strengths of bonds and molecular shapes. Throughout the book, theoretical concepts and experimental evidence are integrated. An introductory chapter summarizes the principles on which the Periodic Table is established, and describes the periodicity of various atomic properties which are relevant to chemical bonding. Symmetry and group theory are introduced to serve as the basis of all molecular orbital treatments of molecules. This basis is then applied to a variety of covalent molecules with discussions of bond lengths and angles and hence molecular shapes. Extensive comparisons of valence bond theory and VSEPR theory with molecular orbital theory are included. Metallic bonding is related to electrical conduction and semi-conduction. The energetics of ionic bond formation and the transition from ionic to covalent bonding is also covered. Ideal for the needs of undergraduate chemistry students, Tutorial Chemistry Texts is a major series consisting of short, single topic or modular texts concentrating on the fundamental areas of chemistry taught in undergraduate science courses. Each book provides a concise account of the basic principles underlying a given subject, embodying an independent-learning philosophy and including worked examples.