The Application Of Uncertainty Quantification Uq And Sensitivity Analysis Sa Methodologies To Engineering Models And Mechanical Experiments
Download The Application Of Uncertainty Quantification Uq And Sensitivity Analysis Sa Methodologies To Engineering Models And Mechanical Experiments full books in PDF, epub, and Kindle. Read online free The Application Of Uncertainty Quantification Uq And Sensitivity Analysis Sa Methodologies To Engineering Models And Mechanical Experiments ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yan Wang |
Publisher | : Woodhead Publishing |
Total Pages | : 604 |
Release | : 2020-03-12 |
Genre | : Technology & Engineering |
ISBN | : 0081029411 |
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Author | : Roger Ghanem |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-05-08 |
Genre | : Mathematics |
ISBN | : 9783319123844 |
The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Author | : Ralph C. Smith |
Publisher | : SIAM |
Total Pages | : 400 |
Release | : 2013-12-02 |
Genre | : Computers |
ISBN | : 161197321X |
The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Author | : Sudip Dey |
Publisher | : CRC Press |
Total Pages | : 375 |
Release | : 2018-09-19 |
Genre | : Mathematics |
ISBN | : 1498784461 |
Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.
Author | : Andrea Saltelli |
Publisher | : John Wiley & Sons |
Total Pages | : 304 |
Release | : 2008-02-28 |
Genre | : Mathematics |
ISBN | : 9780470725177 |
Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.
Author | : Paul G. Constantine |
Publisher | : SIAM |
Total Pages | : 105 |
Release | : 2015-03-17 |
Genre | : Computers |
ISBN | : 1611973864 |
Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Author | : T.J. Sullivan |
Publisher | : Springer |
Total Pages | : 351 |
Release | : 2015-12-14 |
Genre | : Mathematics |
ISBN | : 3319233955 |
This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.
Author | : Etienne de Rocquigny |
Publisher | : John Wiley & Sons |
Total Pages | : 364 |
Release | : 2008-09-15 |
Genre | : Mathematics |
ISBN | : 0470770740 |
Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. Authored by a leading European network of experts representing a cross section of industries, Uncertainty in Industrial Practice aims to provide a reference for the dissemination of uncertainty treatment in any type of industry. It is concerned with the quantification of uncertainties in the presence of data, model(s) and knowledge about the system, and offers a technical contribution to decision-making processes whilst acknowledging industrial constraints. The approach presented can be applied to a range of different business contexts, from research or early design through to certification or in-service processes. The authors aim to foster optimal trade-offs between literature-referenced methodologies and the simplified approaches often inevitable in practice, owing to data, time or budget limitations of technical decision-makers. Uncertainty in Industrial Practice: Features recent uncertainty case studies carried out in the nuclear, air & space, oil, mechanical and civil engineering industries set in a common methodological framework. Presents methods for organizing and treating uncertainties in a generic and prioritized perspective. Illustrates practical difficulties and solutions encountered according to the level of complexity, information available and regulatory and financial constraints. Discusses best practice in uncertainty modeling, propagation and sensitivity analysis through a variety of statistical and numerical methods. Reviews recent standards, references and available software, providing an essential resource for engineers and risk analysts in a wide variety of industries. This book provides a guide to dealing with quantitative uncertainty in engineering and modelling and is aimed at practitioners, including risk-industry regulators and academics wishing to develop industry-realistic methodologies.
Author | : William L. Oberkampf |
Publisher | : Cambridge University Press |
Total Pages | : 782 |
Release | : 2010-10-14 |
Genre | : Computers |
ISBN | : 1139491768 |
Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Author | : S.O. Funtowicz |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2012-12-06 |
Genre | : Social Science |
ISBN | : 9400906218 |
This book explains the notational system NUSAP (Numeral, Unit, Spread, Assessment, Pedigree) and applies it to several examples from the environmental sciences. The authors are now making further extensions of NUSAP, including an algorithm for the propagation of quality-grades through models used in risk and safety studies. They are also developing the concept of `Post-normal Science', in which quality assurance of information requires the participation of `extended peer-communities' lying outside the traditional expertise.