TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY
Author: PRASUN KUMAR NAYAK
Publisher: PHI Learning Pvt. Ltd.
Total Pages: 551
Release: 2011-12-23
Genre: Mathematics
ISBN: 812034507X

Primarily intended for the undergraduate and postgraduate students of mathematics, this textbook covers both geometry and tensor in a single volume. This book aims to provide a conceptual exposition of the fundamental results in the theory of tensors. It also illustrates the applications of tensors to differential geometry, mechanics and relativity. Organized in ten chapters, it provides the origin and nature of the tensor along with the scope of the tensor calculus. Besides this, it also discusses N-dimensional Riemannian space, characteristic peculiarity of Riemannian space, intrinsic property of surfaces, and properties and transformation of Christoffel’s symbols. Besides the students of mathematics, this book will be equally useful for the postgraduate students of physics. KEY FEATURES : Contains 250 worked out examples Includes more than 350 unsolved problems Gives thorough foundation in Tensors

Tensor and Vector Analysis

Tensor and Vector Analysis
Author: C. E. Springer
Publisher: Courier Corporation
Total Pages: 258
Release: 2013-09-26
Genre: Mathematics
ISBN: 048632091X

Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.

Tensor Analysis on Manifolds

Tensor Analysis on Manifolds
Author: Richard L. Bishop
Publisher: Courier Corporation
Total Pages: 290
Release: 2012-04-26
Genre: Mathematics
ISBN: 0486139239

DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY AND THEIR APPLICATIONS

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY AND THEIR APPLICATIONS
Author: Quddus Khan
Publisher: Misha Books
Total Pages: 578
Release: 2020-12-29
Genre: Mathematics
ISBN: 9389055326

This book is intended to serve as a Textbook for Undergraduate and Post - graduate students of Mathematics. It will be useful to the researchers working in the field of Differential geometry and its applications to general theory of relativity and other applied areas. It will also be helpful in preparing for the competitive examinations like IAS, IES, NET, PCS, and UP Higher Education exams. The text starts with a chapter on Preliminaries discussing basic concepts and results which would be taken for general later in the subsequent chapters of this book. This is followed by the Study of the Tensors Algebra and its operations and types, Christoffel's symbols and its properties, the concept of covariant differentiation and its properties, Riemann's symbols and its properties, and application of tensor in different areas in part – I and the study of the Theory of Curves in Space, Concepts of a Surface and Fundamental forms, Envelopes and Developables, Curvature of Surface and Lines of Curvature, Fundamental Equations of Surface Theory, Theory of Geodesics, Differentiable Manifolds and Riemannian Manifold and Application of Differential Geometry in Part –II. KEY FEATURES: Provides basic Concepts in an easy to understand style; Presentation of the subject in a natural way; Includes a large number of solved examples and illuminating illustrations; Exercise questions at the end of the topic and at the end of each chapter; Proof of the theorems are given in an easy to understand style; Neat and clean figures are given at appropriate places; Notes and remarks are given at appropriate places.

Tensors and Riemannian Geometry

Tensors and Riemannian Geometry
Author: Nail H. Ibragimov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 198
Release: 2015-08-31
Genre: Mathematics
ISBN: 3110379503

This book is based on the experience of teaching the subject by the author in Russia, France, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics on tensors, Riemannian geometry and geometric approach to partial differential equations. Application of approximate transformation groups to the equations of general relativity in the de Sitter space simplifies the subject significantly.

Manifolds, Tensor Analysis, and Applications

Manifolds, Tensor Analysis, and Applications
Author: Ralph Abraham
Publisher: Springer Science & Business Media
Total Pages: 666
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210291

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

Tensors, Differential Forms, and Variational Principles

Tensors, Differential Forms, and Variational Principles
Author: David Lovelock
Publisher: Courier Corporation
Total Pages: 402
Release: 2012-04-20
Genre: Mathematics
ISBN: 048613198X

Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Author: Hung Nguyen-Schäfer
Publisher: Springer
Total Pages: 389
Release: 2016-08-16
Genre: Technology & Engineering
ISBN: 3662484978

This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.

Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications
Author: A. I. Borisenko
Publisher: Courier Corporation
Total Pages: 292
Release: 2012-08-28
Genre: Mathematics
ISBN: 0486131904

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.