Synthesis Of Molecule Based Magnetic Materials
Download Synthesis Of Molecule Based Magnetic Materials full books in PDF, epub, and Kindle. Read online free Synthesis Of Molecule Based Magnetic Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : D. Gatteschi |
Publisher | : Springer Science & Business Media |
Total Pages | : 413 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401132542 |
One of the major challenges of science in the last few years of the second millennium is learning how to design materials which can fulfill specific tasks. Ambitious as it may be, the possibilities of success are not ne~li~ble provided that all the different expertises merge to overcome the limits of eXIsting disciplines and forming new paradigms science. The NATO Advanced Research Workshop on "Magnetic Molecular Materials" was organized with the above considerations in mind in order to determine which are the most appropriate synthetic strategies, experimental techniques of investigation, and theoretical models which are needed in order to develop new classes of magnetic materials which are based on molecules rather than on metallic or ionic lattices. Why molecules? The answer may be obvious: molecular chemistry in principle fine can tune the structures and the properties of complex aggregates, and nature already provides a large number of molecular aggregates which can perform the most disparate functions. The contributions collected in this book provide a rather complete view of the current research accomplishments of magnetic molecular materials. There are several different synthetic approaches which are followed ranging from purely organic to inorganic materials. Some encouraging successes have already been achieved, even if the critical temperatures below which magnetic order is observed still are in the range requiring liquid helium.
Author | : E. Coronado |
Publisher | : Springer Science & Business Media |
Total Pages | : 595 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 9401723192 |
Molecular Magnetism: From Molecular Assemblies to the Devices reviews the state of the art in the area. It is organized in two parts, the first of which introduces the basic concepts, theories and physical techniques required for the investigation of the magnetic molecular materials, comparing them with those used in the study of classical magnetic materials. Here the reader will find: (i) a detailed discussion of the electronic processes involved in the magnetic interaction mechanisms of molecular systems, including electron delocalization and spin polarization effects; (ii) a presentation of the available theoretical models based on spin and Hubbard Hamiltonians; and (iii) a description of the specific physical investigative techniques used to characterize the materials. The second part presents the different classes of existing magnetic molecular materials, focusing on the possible synthetic strategies developed to date to assemble the molecular building blocks ranging from purely organic to inorganic materials, as well as on their physical properties and potential applications. These materials comprise inorganic and organic ferro- and ferrimagnets, high nuclearity organic molecules and magnetic and metallic clusters, spin crossover systems, charge transfer salts (including fulleride salts and organic conductors and superconductors), and organized soft media (magnetic liquid crystals and Langmuir-Blodgett films).
Author | : Malgorzata Holynska |
Publisher | : John Wiley & Sons |
Total Pages | : 448 |
Release | : 2019-02-11 |
Genre | : Science |
ISBN | : 3527343210 |
Concise overview of synthesis and characterization of single molecule magnets Molecular magnetism is explored as an alternative to conventional solid-state magnetism as the basis for ultrahigh-density memory materials with extremely fast processing speeds. In particular single-molecule magnets (SMM) are in the focus of current research, both because of their intrinsic magnetization properties, as well as because of their potential use in molecular spintronic devices. SMMs are fascinating objects on the example of which one can explain many concepts. Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics starts with a general introduction to single-molecule magnets (SMM), which helps readers to understand the evolution of the field and its future. The following chapters deal with the current synthetic methods leading to SMMs, their magnetic properties and their characterization by methods such as high-field electron paramagnetic resonance, paramagnetic nuclear magnetic resonance, and magnetic circular dichroism. The book closes with an overview of radical-bridged SMMs, which have shown application potential as building blocks for high-density memories. Covers a hot topic – single-molecule magnetism is one of the fastest growing research fields in inorganic chemistry and materials science Provides researchers and newcomers to the field with a solid foundation for their further work Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics will appeal to inorganic chemists, materials scientists, molecular physicists, and electronics engineers interested in the rapidly growing field of study.
Author | : Jinkui Tang |
Publisher | : Springer |
Total Pages | : 219 |
Release | : 2015-04-24 |
Genre | : Science |
ISBN | : 3662469995 |
This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.
Author | : Joel S. Miller |
Publisher | : John Wiley & Sons |
Total Pages | : 395 |
Release | : 2006-03-06 |
Genre | : Science |
ISBN | : 3527604502 |
Combining the contemporary knowledge from widely scattered sources, this is a much-needed and comprehensive overview of the field. In maintaining a balance between theory and experiment, the book guides both advanced students and specialists to this research area. Topical reviews written by the foremost scientists explain recent trends and advances, focusing on the correlations between electronic structure and magnetic properties. The book spans recent trends in magnetism for molecules -- as well as inorganic-based materials, with an emphasis on new phenomena being explored from both experimental and theoretical viewpoints with the aim of understanding magnetism on the atomic scale. The volume helps readers evaluate their own experimental observations and serves as a basis for the design of new magnetic materials. Topics covered include: * Metallocenium Salts of Radical Anion Bis-(dichalcogenate) metalates * Chiral Molecule-Based Magnets * Cooperative Magnetic Behavior in Metal-Dicyanamide Complexes * Lanthanide Ions in Molecular Exchange Coupled Systems * Monte Carlo Simulation * Metallocene-Based Magnets * Magnetic Nanoporous Molecular Materials A unique reference work, indispensable for everyone concerned with the phenomena of magnetism.
Author | : Maria Paula Juanico |
Publisher | : Cuvillier Verlag |
Total Pages | : 151 |
Release | : 2003 |
Genre | : |
ISBN | : 3865370306 |
Author | : Olivier Kahn |
Publisher | : Courier Dover Publications |
Total Pages | : 419 |
Release | : 2021-11-17 |
Genre | : Science |
ISBN | : 0486837424 |
Highly regarded and historic book covers basic concepts of magnetization and magnetic susceptibility, establishes the fundamental equations of molecular magnetism, and examines molecules containing a unique magnetic center. 2019 edition.
Author | : Barbara Sieklucka |
Publisher | : John Wiley & Sons |
Total Pages | : 508 |
Release | : 2017-01-17 |
Genre | : Science |
ISBN | : 3527339531 |
A comprehensive overview of this rapidly expanding interdisciplinary field of research. After a short introduction to the basics of magnetism and molecular magnetism, the text goes on to cover specific properties of molecular magnetic materials as well as their current and future applications. Design strategies for acquiring molecular magnetic materials with desired physical properties are discussed, as are such multifunctional materials as high Tc magnets, chiral and luminescent magnets, magnetic sponges as well as photo- and piezo-switching magnets. The result is an excellent resource for materials scientists, chemists, physicists and crystal engineers either entering or already working in the field.
Author | : Keiichi Katoh |
Publisher | : MDPI |
Total Pages | : 134 |
Release | : 2020-05-29 |
Genre | : Science |
ISBN | : 3039289012 |
Research on molecule-based magnetic materials was systematized in the 1980s and expanded rapidly. A Special Issue focusing on molecule-based magnetic substances was published in Magnetochemistry. However, the functionalities of the substances increase daily; therefore, the researchers’ quest is not yet in decline. Research on molecule-based magnetism developed across many fields, including chemistry, physics, material chemistry, and applied physics, and the use of the various functionalities of these molecule-based magnetic substances has greatly influenced research on spin-based devices. In honor of Professor Masahiro Yamashita, who contributed greatly to this field, I have put together a Special Issue that highlights ten groundbreaking articles. The issue is entitled, “A Themed Issue of Functional Molecule-Based Magnets: Dedicated to Professor Masahiro Yamashita on the Occasion of his 65th Birthday”. I wish to thank the authors for their dedicated work, and the referees and editorial staff for the time they invested commenting on the articles.
Author | : Kannan M. Krishnan |
Publisher | : Oxford University Press |
Total Pages | : 816 |
Release | : 2016-10-06 |
Genre | : Science |
ISBN | : 0191066400 |
Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size (small particles) and dimensionality (surface and interfaces) effects — the underpinnings of nanoscience and nanotechnology that are brought into sharp focus by magnetism. The hallmark of modern science is its interdisciplinarity, and the second half of the book offers interdisciplinary discussions of information technology, magnetoelectronics and the future of biomedicine via recent developments in magnetism. Modern materials with tailored properties require careful synthetic and characterization strategies. The book also includes relevant details of the chemical synthesis of small particles and the physical deposition of ultra thin films. In addition, the book presents details of state-of-the-art characterization methods and summaries of representative families of materials, including tables of properties. CGS equivalents (to SI) are included.