Structural DNA Nanotechnology

Structural DNA Nanotechnology
Author: Nadrian C. Seeman
Publisher: Cambridge University Press
Total Pages: 269
Release: 2015
Genre: Computers
ISBN: 0521764483

Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.

Protein Self-Assembly

Protein Self-Assembly
Author: Jennifer J. McManus
Publisher: Humana
Total Pages: 266
Release: 2020-08-08
Genre: Science
ISBN: 9781493996803

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.

Materials Nanoarchitectonics

Materials Nanoarchitectonics
Author: Katsuhiko Ariga
Publisher: Elsevier
Total Pages: 648
Release: 2023-12-07
Genre: Technology & Engineering
ISBN: 0323994733

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures

Nanofabrication

Nanofabrication
Author: Ampere A. Tseng
Publisher: World Scientific
Total Pages: 583
Release: 2008
Genre: Technology & Engineering
ISBN: 9812790896

Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students. Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices. Sample Chapter(s). Chapter 1: Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy (3,320 KB). Contents: Atomic Force Microscope Lithography (N Kawasegi et al.); Nanowire Assembly and Integration (Z Gu & D H Gracias); Extreme Ultraviolet Lithography (H Kinoshita); Electron Projection Lithography (T Miura et al.); Electron Beam Direct Writing (K Yamazaki); Electron Beam Induced Deposition (K Mitsuishi); Focused Ion Beams and Interaction with Solids (T Ishitani et al.); Nanofabrication of Nanoelectromechanical Systems (NEMS): Emerging Techniques (K L Ekinci & J Brugger); and other papers. Readership: Researchers, professionals, and graduate students in the fields of nanoengineering and nanoscience.

DNA Nanotechnology

DNA Nanotechnology
Author: Chunhai Fan
Publisher: Springer Nature
Total Pages: 410
Release: 2020-09-07
Genre: Technology & Engineering
ISBN: 3030548066

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials" is available open access under a CC BY 4.0 License via link.springer.com.

Materials Science of DNA

Materials Science of DNA
Author: Jung-II Jin
Publisher: CRC Press
Total Pages: 338
Release: 2016-04-19
Genre: Medical
ISBN: 1439827427

The field of materials science and technology has undergone revolutionary advances due to the development of novel analytical tools, functional materials, and multidisciplinary approaches to engineering. Additionally, theoretical predictions combined with increasingly improved models and computational capabilities are making impressive contribution

Emerging Applications of Nanoparticles and Architectural Nanostructures

Emerging Applications of Nanoparticles and Architectural Nanostructures
Author: Abdel Salam Hamdy Makhlouf
Publisher: William Andrew
Total Pages: 650
Release: 2018-03-22
Genre: Science
ISBN: 0128135166

Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a valuable reference for both materials scientists, chemical and mechanical engineers working both in R&D and academia who want to learn more on how nanoparticles and nanomaterials are commercially applied. - Provides an in-depth look at the properties of nanoparticles and architecture nanostructures in terms of their applicability for industrial uses - Analyzes the most recent advances and industrial applications of different types of nanoparticles and architecture nanostructures, taking into account their unusual structures and compositions - Identifies novel nanometric particles and architectures that are of particular value for applications and the techniques required to use them effectively

Janus Particle Synthesis, Self-Assembly and Applications

Janus Particle Synthesis, Self-Assembly and Applications
Author: Shan Jiang
Publisher: Royal Society of Chemistry
Total Pages: 313
Release: 2012-11-30
Genre: Science
ISBN: 1849735107

Named after the two-faced roman god, Janus particles have gained much attention due to their potential in a variety of applications, including drug delivery. This is the first book devoted to Janus particles and covers their methods of synthesis, how these particles self-assemble, and their possible uses. By following the line of synthesis, self-assembly and applications, the book not only covers the fundamental and applied aspects, but it goes beyond a simple summary and offers a logistic way of selecting the proper synthetic route for Janus particles for certain applications. Written by pioneering experts in the field, the book introduces the Janus concept to those new to the topic and highlights the most recent research progress on the topic for those active in the field and catalyze new ideas.

3D DNA Nanostructure

3D DNA Nanostructure
Author: Yonggang Ke
Publisher: Humana
Total Pages: 0
Release: 2016-11-04
Genre: Medical
ISBN: 9781493964529

This detailed volume presents a comprehensive technical overview of DNA nanotechnology with an emphasis on 3D DNA nanostructure design and applications. Coverage spans from basic design principles for DNA and RNA nanostructures to their cutting-edge applications in a variety of fields, with the book divided into basic DNA and RNA nanostructure design strategies as well as applications utilizing DNA nanostructures, including but not limited to nanomedicine, bioimaging, biosensing, nanoplasmonics, nanoelectronics, nanofabrication, crystallography, biophysics, and analytical chemistry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and authoritative, 3D DNA Nanostructure: Methods and Protocols provides the most up-to-date tutorial style overviews and technical style protocols to benefit researchers in a wide variety of areas.

Plasma based Synthesis and Modification of Nanomaterials

Plasma based Synthesis and Modification of Nanomaterials
Author: Pawel Pohl
Publisher: MDPI
Total Pages: 160
Release: 2020-05-12
Genre: Medical
ISBN: 3039213954

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.