Surveys in Combinatorics 2017

Surveys in Combinatorics 2017
Author: Anders Claesson
Publisher: Cambridge University Press
Total Pages: 451
Release: 2017-06-30
Genre: Mathematics
ISBN: 1108350356

This volume contains nine survey articles which provide expanded accounts of plenary seminars given at the British Combinatorial Conference at the University of Strathclyde in July 2017. This biennial conference is a well-established international event attracting speakers from around the world. Written by internationally recognised experts in the field, these articles represent a timely snapshot of the state of the art in the different areas of combinatorics. Topics covered include the robustness of graph properties, the spt-function of Andrews, switching techniques for edge decompositions of graphs, monotone cellular automata, and applications of relative entropy in additive combinatorics. The book will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.

Surveys in Combinatorics 2022

Surveys in Combinatorics 2022
Author: Anthony Nixon
Publisher: Cambridge University Press
Total Pages: 257
Release: 2022-06-09
Genre: Mathematics
ISBN: 1009096222

This volume contains surveys of current research directions in combinatorics written by leading researchers in their fields.

Surveys in Combinatorics 2024

Surveys in Combinatorics 2024
Author: Felix Fischer
Publisher: Cambridge University Press
Total Pages: 306
Release: 2024-06-13
Genre: Mathematics
ISBN: 1009490540

This volume contains nine survey articles by the invited speakers of the 30th British Combinatorial Conference, held at Queen Mary University of London in July 2024. Each article provides an overview of recent developments in a current hot research topic in combinatorics. Topics covered include: Latin squares, Erdős covering systems, finite field models, sublinear expanders, cluster expansion, the slice rank polynomial method, and oriented trees and paths in digraphs. The authors are among the world's foremost researchers on their respective topics but their surveys are accessible to nonspecialist readers: they are written clearly with little prior knowledge assumed and with pointers to the wider literature. Taken together these surveys give a snapshot of the research frontier in contemporary combinatorics, helping researchers and graduate students in mathematics and theoretical computer science to keep abreast of the latest developments in the field.

Surveys in Combinatorics 2021

Surveys in Combinatorics 2021
Author: Konrad K. Dabrowski
Publisher: Cambridge University Press
Total Pages: 379
Release: 2021-06-24
Genre: Mathematics
ISBN: 1009018884

These nine articles provide up-to-date surveys of topics of contemporary interest in combinatorics.

Surveys in Combinatorics 2019

Surveys in Combinatorics 2019
Author: Allan Lo
Publisher: Cambridge University Press
Total Pages: 275
Release: 2019-06-27
Genre: Mathematics
ISBN: 1108631622

This volume contains eight survey articles based on the invited lectures given at the 27th British Combinatorial Conference, held at the University of Birmingham in July 2019. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, cryptography, matroids, incidence geometries and graph limits. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.

Equivariant Topology and Derived Algebra

Equivariant Topology and Derived Algebra
Author: Scott Balchin
Publisher: Cambridge University Press
Total Pages: 357
Release: 2021-11-18
Genre: Mathematics
ISBN: 1108931944

A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.

An Indefinite Excursion in Operator Theory

An Indefinite Excursion in Operator Theory
Author: Aurelian Gheondea
Publisher: Cambridge University Press
Total Pages:
Release: 2022-07-28
Genre: Mathematics
ISBN: 1108981275

This modern introduction to operator theory on spaces with indefinite inner product discusses the geometry and the spectral theory of linear operators on these spaces, the deep interplay with complex analysis, and applications to interpolation problems. The text covers the key results from the last four decades in a readable way with full proofs provided throughout. Step by step, the reader is guided through the intricate geometry and topology of spaces with indefinite inner product, before progressing to a presentation of the geometry and spectral theory on these spaces. The author carefully highlights where difficulties arise and what tools are available to overcome them. With generous background material included in the appendices, this text is an excellent resource for researchers in operator theory, functional analysis, and related areas as well as for graduate students.

Invariance of Modules under Automorphisms of their Envelopes and Covers

Invariance of Modules under Automorphisms of their Envelopes and Covers
Author: Ashish K. Srivastava
Publisher: Cambridge University Press
Total Pages: 235
Release: 2021-03-18
Genre: Mathematics
ISBN: 1108960162

The theory of invariance of modules under automorphisms of their envelopes and covers has opened up a whole new direction in the study of module theory. It offers a new perspective on generalizations of injective, pure-injective and flat-cotorsion modules beyond relaxing conditions on liftings of homomorphisms. This has set off a flurry of work in the area, with hundreds of papers using the theory appearing in the last decade. This book gives the first unified treatment of the topic. The authors are real experts in the area, having played a major part in the breakthrough of this new theory and its subsequent applications. The first chapter introduces the basics of ring and module theory needed for the following sections, making it self-contained and suitable for graduate students. The authors go on to develop and explain their tools, enabling researchers to employ them, extend and simplify known results in the literature and to solve longstanding problems in module theory, many of which are discussed at the end of the book.

Zeta and L-Functions of Varieties and Motives

Zeta and L-Functions of Varieties and Motives
Author: Bruno Kahn
Publisher: Cambridge University Press
Total Pages: 217
Release: 2020-05-07
Genre: Mathematics
ISBN: 1108574912

The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.

Wigner-Type Theorems for Hilbert Grassmannians

Wigner-Type Theorems for Hilbert Grassmannians
Author: Mark Pankov
Publisher: Cambridge University Press
Total Pages: 154
Release: 2020-01-16
Genre: Mathematics
ISBN: 1108790917

An accessible introduction to the geometric approach to Wigner's theorem and its role in quantum mechanics.