Waves in Dusty Space Plasmas

Waves in Dusty Space Plasmas
Author: Frank Verheest
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2012-12-06
Genre: Science
ISBN: 9401099456

In this volume a thorough review is given of waves in dusty plasmas, a fascinating new domain combining plasmas and charged dust, two omnipresent ingredients of the Universe. Spokes and braids observed in the rings of Saturn cannot be explained by gravitation alone, but need the presence of charged dust. Other examples abound, as in zodiacal light, noctilucent clouds, comets and molecular clouds. After discussing charging mechanisms, supported by exciting new experiments, and space observations, the book describes extensions of known plasma modes covering the low frequencies typical for charged dust. Mixing detailed theoretical steps with summaries of expert contributions, a systematic multi-species treatment puts the literature in perspective, suitable also for newcomers. Typical complications like fluctuating dust charges, self-gravitational effects, and size distributions are dealt with, before ending with an outlook to future work and open questions. In this way, experts as well as interested newcomers will find a reliable guide, not just a compendium.

Surface Electron Cyclotron Waves in Plasmas

Surface Electron Cyclotron Waves in Plasmas
Author: Volodymyr Girka
Publisher: Springer
Total Pages: 206
Release: 2019-04-30
Genre: Science
ISBN: 3030171159

This book is the first of its kind devoted to surface waves propagating across an external static magnetic field at harmonics of the electron cyclotron frequency. Based on comprehensive theoretical studies carried out over the course of about forty years, it presents unique material on various characteristics of these transverse waves, namely, dispersion properties and their dependence on numerous design peculiarities of plasma waveguides; damping due to interaction with the plasma surface (the kinetic channel) and collisions between plasma particles (the Ohmic channel); interaction with flows of charged particles moving above the plasma surface; parametric excitation due to the effect of an external radiofrequency field; and their power transfer for sustaining gas discharges. Clarifying numerous complicated mathematical issues it is a valuable resource for postgraduate students and experts in plasma physics, electromagnetic waves, and the kinetic theory of plasmas.

Electromagnetic Waves, Materials, and Computation with MATLAB®

Electromagnetic Waves, Materials, and Computation with MATLAB®
Author: Dikshitulu K. Kalluri
Publisher: CRC Press
Total Pages: 862
Release: 2016-04-19
Genre: Technology & Engineering
ISBN: 1439838682

Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t

Fluctuations and Non-Linear Wave Interactions in Plasmas

Fluctuations and Non-Linear Wave Interactions in Plasmas
Author: A. G. Sitenko
Publisher: Elsevier
Total Pages: 279
Release: 2016-09-20
Genre: Science
ISBN: 1483189392

Fluctuations and Non-linear Wave Interactions in Plasmas talks about a theory of fluctuations in a homogenous plasma. The title takes into consideration non-linear wave interactions. The text first presents the statistical description of plasma, and then proceeds to covering non-linear electrodynamic equations. Next, the selection deals with the electrodynamic properties of magento-active plasma and waves in plasma. The text also tackles non-linear wave interactions, along with fluctuations in plasmas. The next chapter talks about the effect of non-linear wave interaction on fluctuations in a plasma. Chapter 8 details fluctuation-dissipation theorem, while Chapter 9 discusses kinetic equations. The tenth chapter covers the scattering and radiation of waves and the last chapter tackles wave interaction in semi-bounded plasma. The book will be of great use to scientists and professionals who deals with plasmas.

Principles of Electromagnetic Waves and Materials

Principles of Electromagnetic Waves and Materials
Author: Dikshitulu K. Kalluri
Publisher: CRC Press
Total Pages: 652
Release: 2017-11-14
Genre: Technology & Engineering
ISBN: 1498733301

This book focuses primarily on senior undergraduates and graduates in Electromagnetics Waves and Materials courses. The book takes an integrative approach to the subject of electromagnetics by supplementing quintessential "old school" information and methods with instruction in the use of new commercial software such as MATLAB. Homework problems, PowerPoint slides, an instructor’s manual, a solutions manual, MATLAB downloads, quizzes, and suggested examination problems are included. Revised throughout, this new edition includes two key new chapters on artificial electromagnetic materials and electromagnetics of moving media.

Wave Propagation

Wave Propagation
Author: Andrey Petrin
Publisher: BoD – Books on Demand
Total Pages: 584
Release: 2011-03-16
Genre: Technology & Engineering
ISBN: 953307275X

The book collects original and innovative research studies of the experienced and actively working scientists in the field of wave propagation which produced new methods in this area of research and obtained new and important results. Every chapter of this book is the result of the authors achieved in the particular field of research. The themes of the studies vary from investigation on modern applications such as metamaterials, photonic crystals and nanofocusing of light to the traditional engineering applications of electrodynamics such as antennas, waveguides and radar investigations.

Canonical Problems in the Theory of Plasmonics

Canonical Problems in the Theory of Plasmonics
Author: Afshin Moradi
Publisher: Springer Nature
Total Pages: 359
Release: 2020-05-27
Genre: Science
ISBN: 3030438368

This book provides a systemic and self-contained guide to the theoretical description of the fundamental properties of plasmonic waves. The field of plasmonics is built on the interaction of electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures, and so to describe basic plasmonic behavior, boundary-value problems may be formulated and solved using electromagnetic wave theory based on Maxwell’s equations and the electrostatic approximation. In preparation, the book begins with the basics of electromagnetic and electrostatic theories, along with a review of the local and spatial nonlocal plasma model of an electron gas. This is followed by clear and detailed boundary value analysis of both classical three-dimensional and novel two-dimensional plasmonic systems in a range of different geometries. With only general electromagnetic theory as a prerequisite, this resulting volume will be a useful entry point to plasmonic theory for students, as well as a convenient reference work for researchers who want to see how the underlying models can be analysed rigorously.