Sea Ice

Sea Ice
Author: Mohammed Shokr
Publisher: John Wiley & Sons
Total Pages: 600
Release: 2015-03-16
Genre: Science
ISBN: 1119027888

Sea Ice: Physics and Remote Sensing addresses experiences acquired mainly in Canada by researchers in the fields of ice physics and growth history in relation to its polycrystalline structure as well as ice parameters retrieval from remote sensing observations. The volume describes processes operating at the macro- and microscale (e.g., brine entrapment in sea ice, crystallographic texture of ice types, brine drainage mechanisms, etc.). The information is supported by high-quality photographs of ice thin-sections prepared from cores of different ice types, all obtained by leading experts during field experiments in the 1970s through the 1990s, using photographic cameras and scanning microscopy. In addition, this volume presents techniques to retrieve a suite of sea ice parameters (e.g. ice type, concentration, extent, thickness, surface temperature, surface deformation, etc.) from space-borne and airborne sensor data. The breadth of the material on this subject is designed to appeal to researchers and users of remote sensing data who want to develop quick familiarity with the capabilities of this technology or detailed knowledge about major techniques for retrieval of key ice parameters. Volume highlights include: Detailed crystallographic classification of natural sea ice, the key information from which information about ice growth conditions can be inferred. Many examples are presented with material to support qualitative and quantitative interpretation of the data. Methods developed for revealing microstructural characteristics of sea ice and performing forensic investigations. Data sets on radiative properties and satellite observations of sea ice, its snow cover, and surrounding open water. Methods of retrieval of ice surface features and geophysical parameters from remote sensing observations with a focus on critical issues such as the suitability of different sensors for different tasks and data synergism. Sea Ice: Physics and Remote Sensing is intended for a variety of sea ice audiences interested in different aspects of ice related to physics, geophysics, remote sensing, operational monitoring, mechanics, and cryospheric sciences.

Sea Ice

Sea Ice
Author: Mohammed Shokr
Publisher: John Wiley & Sons
Total Pages: 628
Release: 2023-04-20
Genre: Science
ISBN: 111982821X

SEA ICE The latest edition of the gold standard in sea ice references In the newly revised second edition of Sea Ice: Physics and Remote Sensing, a team of distinguished researchers delivers an in-depth review of the features and structural properties of ice, as well as the latest advances in geophysical sensors, ice parameter retrieval techniques, and remote sensing data. The book has been updated to reflect the latest scientific developments in macro- and micro-scale sea ice research. For this edition, the authors have included high-quality photographs of thin sections from cores of various ice types, as well as a comprehensive account of all major field expeditions that have systematically surveyed sea ice and its properties. Readers will also find: A thorough introduction to ice physics and physical processes, including ice morphology and age-based structural features Practical discussions of radiometric and radar-scattering observations from sea ice, including radar backscatter and microwave emission The latest techniques for the retrieval of sea ice parameters from space-borne and airborne sensor data New chapters on sea ice thermal microwave emissions and on the impact of climate change on polar sea ice Perfect for academic researchers working on sea ice, the cryosphere, and climatology, Sea Ice: Physics and Remote Sensing will also benefit meteorologists, marine operators, and high-latitude construction engineers.

Creep and Fracture of Ice

Creep and Fracture of Ice
Author: Erland M. Schulson
Publisher: Cambridge University Press
Total Pages: 403
Release: 2009-04-30
Genre: Science
ISBN: 0521806208

The first complete account of the physics of the creep and fracture of ice, for graduates, engineers and scientists.

Engineering Physics of High-Temperature Materials

Engineering Physics of High-Temperature Materials
Author: Nirmal K. Sinha
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2022-03-29
Genre: Technology & Engineering
ISBN: 1119420482

ENGINEERING PHYSICS OF HIGH-TEMPERATURE MATERIALS Discover a comprehensive exploration of high temperature materials written by leading materials scientists In Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics distinguished researchers and authors Nirmal K. Sinha and Shoma Sinha deliver a rigorous and wide-ranging discussion of the behavior of different materials at high temperatures. The book discusses a variety of physical phenomena, from plate tectonics and polar sea ice to ice-age and intraglacial depression and the postglacial rebound of Earth’s crust, stress relaxation at high temperatures, and microstructure and crack-enhanced Elasto Delayed Elastic Viscous (EDEV) models. At a very high level, Engineering Physics of High-Temperature Materials (EPHTM) takes a multidisciplinary view of the behavior of materials at temperatures close to their melting point. The volume particularly focuses on a powerful model called the Elasto-Delayed-Elastic-Viscous (EDEV) model that can be used to study a variety of inorganic materials ranging from snow and ice, metals, including complex gas-turbine engine materials, as well as natural rocks and earth formations (tectonic processes). It demonstrates how knowledge gained in one field of study can have a strong impact on other fields. Engineering Physics of High-Temperature Materials will be of interest to a broad range of specialists, including earth scientists, volcanologists, cryospheric and interdisciplinary climate scientists, and solid-earth geophysicists. The book demonstrates that apparently dissimilar polycrystalline materials, including metals, alloys, ice, rocks, ceramics, and glassy materials, all behave in a surprisingly similar way at high temperatures. This similarity makes the information contained in the book valuable to all manner of physical scientists. Readers will also benefit from the inclusion of: A thorough introduction to the importance of a unified model of high temperature material behavior, including high temperature deformation and the strength of materials An exploration of the nature of crystalline substances for engineering applications, including basic materials classification, solid state materials, and general physical principles Discussions of forensic physical materialogy and test techniques and test systems Examinations of creep fundamentals, including rheology and rheological terminology, and phenomenological creep failure models Perfect for materials scientists, metallurgists, and glaciologists, Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics will also earn a place in the libraries of specialists in the nuclear, chemical, and aerospace industries with an interest in the physics and engineering of high-temperature materials.

Studies of Ice Etching

Studies of Ice Etching
Author: Daisuke Kuroiwa
Publisher:
Total Pages: 56
Release: 1965
Genre: Ice crystals
ISBN:

Thermal etching of ice and its application to the investigation of surface abrasion in ice crystals is explained. Investigations of surface abrasion in ice crystals provide fundamental information in the study of snow and ice friction. The technique of producing evaporation etch pits by the application of Formvar film to the ice crystal surface is described, and the development of microcrystals by recrystallization is compared with the surrounding mother crystals. Experimental data are presented and discussed with emphasis on the development of thermal etch pits, scratches on different crystal faces, damage to the prismatic face, thermal etch channels on the basal plane, predominant orientation of etch channels on the basal plane, and etch-pit-free zones and stress concentrations around solid inclusions. (Author).

Building Research

Building Research
Author: National Research Council Canada. Division of Building Research
Publisher:
Total Pages: 112
Release: 1968
Genre: Building
ISBN:

Ice Physics

Ice Physics
Author: Peter Victor Hobbs
Publisher:
Total Pages: 856
Release: 2010-05-06
Genre: Science
ISBN: 019958771X

This monograph provides an account of the physics and chemistry of ice. Informed by research from physicists, chemists and glaciologists, the book places emphasis on the basic physical properties of ice, the modes of nucleation and growth of ice, and the interpretation of these phenomena in terms of molecular structure.