Dynamic Wetting and Drag Reduction on Superhydrophobic and Liquid-infused Surfaces

Dynamic Wetting and Drag Reduction on Superhydrophobic and Liquid-infused Surfaces
Author: Jeong-Hyun Kim
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Reducing drag in fluid flow has been one of the most widely studied topics in fluid dynamics due to the significant impact on improving operational efficiencies and cutting cost in applications from the aerospace, automotive and naval industries. Over the past two decades, superhydrophobic surfaces have been in the spotlight due to their ability to reduce frictional drag on the wall surface in both laminar and turbulent flows. Despite the extensive work on superhydrophobic surfaces, there are still a number of open questions remaining. In this dissertation, we investigate how a moving contact line interacts with a superhydrophobic surface by performing the first dynamic contact angle measurements to better understand the dynamics of droplets and streams on the surfaces. Our measurements found that the dynamic advancing contact angles on a superhydrophobic surface remains constant independent on capillary number while the dynamic receding contact angles decreases with capillary number but at a rate much slower than on a smooth surface. Furthermore, we investigated the role of the air-water interface shapes on the drag reduction. A novel microfluidic device was designed to incorporate superhydrophobic pillars. The shape of the air-water interface was changed with change to the static pressure in the channel. Slip along interface trapped within the superhydrophobic surface was found to result in significant drag reduction. However, the changes in flow geometry due to changes in bubble shape dominated effects due to slip. Reducing the bubble size amplified drag reduction, while increasing bubble size reduced drag reduction and even resulted in drag enhancement. In this dissertation, we also studies liquid-infused superhydrophobic surfaces as an alternative to the air-infused superhydrophobic surfaces. In the studies presented here, various immiscible oils were infused into the structures of precisely patterned and randomly rough superhydrophobic surfaces. A series of experiments were performed to investigate how liquid-infused surface affect drag reduction and droplet impact dynamics. The pressure drop reduction and slip length on the liquid-infused surfaces in microchannels were found to increase as the ratio between viscosity of water and the infused oil was increased. The longevity of these surfaces was also studied with the most effective surface found to be randomly rough. The effect of the viscosity ratio was also investigated on the droplet impact dynamics onto liquid-infused superhydrophobic surfaces. The increase in the viscosity ratio was found to increase a maximum diameter and a spreading/retraction rates of droplets. Taken together, the experimental research presented in this dissertation have allowed us to better understand and optimize the design of air-infused and liquid-infused superhydrophobic surfaces for drag reduction, droplet spreading and liquid mobility. With this new-found knowledge, a sense of new innovative ideas and applications has been or soon will be realized.

Superhydrophobic Surfaces

Superhydrophobic Surfaces
Author: Russell J. Crawford
Publisher: Elsevier
Total Pages: 181
Release: 2015-02-19
Genre: Technology & Engineering
ISBN: 0128013311

Superhydrophobic Surfaces analyzes the fundamental concepts of superhydrophobicity and gives insight into the design of superhydrophobic surfaces. The book serves as a reference for the manufacturing of materials with superior water-repellency, self-cleaning, anti-icing and corrosion resistance. It thoroughly discusses many types of hydrophobic surfaces such as natural superhydrophobic surfaces, superhydrophobic polymers, metallic superhydrophobic surfaces, biological interfaces, and advanced/hybrid superhydrophobic surfaces. - Provides an adequate blend of complex engineering concepts with in-depth explanations of biological principles guiding the advancement of these technologies - Describes complex ideas in simple scientific language, avoiding overcomplicated equations and discipline-specific jargon - Includes practical information for manufacturing superhydrophobic surfaces - Written by experts with complementary skills and diverse scientific backgrounds in engineering, microbiology and surface sciences

Bioinspired Structures and Design

Bioinspired Structures and Design
Author: Wole Soboyejo
Publisher: Cambridge University Press
Total Pages: 374
Release: 2020-09-17
Genre: Technology & Engineering
ISBN: 1108963447

Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.

Superhydrophobic Surfaces

Superhydrophobic Surfaces
Author: Alain Carré
Publisher: CRC Press
Total Pages: 510
Release: 2009-04-24
Genre: Science
ISBN: 9004193332

Superhydrophobic surfaces (water contact angles higher than 150a ) can only be achieved by a combination of hydrophobicity (low surface energy materials) with appropriate surface texture. In nature one can find an array of impressive and elegant examples of superhydrophobic surfaces. For example, on a lotus leaf rain drops bounce off after impact,

Bioinspired Superhydrophobic Nano- and Microstructured Surfaces for Drag Reduction and Optoelectronics

Bioinspired Superhydrophobic Nano- and Microstructured Surfaces for Drag Reduction and Optoelectronics
Author: Felix Vüllers
Publisher: KIT Scientific Publishing
Total Pages: 182
Release: 2018-08-29
Genre:
ISBN: 3731508168

Inspired by superhydrophobic leaves of water plants, a flexible superhydrophobic self-cleaning, transparent thin polymeric nanofur film was fabricated through highly scalable hot embossing and hot pulling techniques. Nanofur can retain an air film underwater, whose stability against external stimuli such as high pressure and movement through fluids is investigated. Additionally, the optical properties of nanofur are investigated and exploited to enhance the efficiency of optoelectronic devices.

A Numerical Study of the Effects of Superhydrophobic Surfaces on Skin-friction Drag Reduction in Wall-bounded Shear Flows

A Numerical Study of the Effects of Superhydrophobic Surfaces on Skin-friction Drag Reduction in Wall-bounded Shear Flows
Author: Hyun Wook Park
Publisher:
Total Pages: 117
Release: 2015
Genre:
ISBN:

Recent developments of superhydrophobic surfaces (SHSs) have attracted much attention because of the possibility of achieving substantial skin-friction drag reduction at high Reynolds number turbulent flows. An SHS, consisting of a hydrophobic surface combined with micro- or nano-scaled topological features, can yield an effective slip length on the order of several hundred microns. In this numerical study, direct numerical simulations of turbulent channel flows and turbulent boundary layers (TBLs) developing over SHSs were performed. An SHS was modeled through the shear-free boundary condition, assuming the sustainable gas-liquid interface remained as a flat surface. For the considered Reynolds number ranges and SHS geometries, it was found that the effective slip length normalized by viscous wall units was the key parameter and the effective slip length should be on the order of the buffer layer in order to have the maximum benefit of drag reduction. The effective surface slip length can be interpreted as a depth of influence into which SHSs affect the flow in the wall-normal direction. This result demonstrates that an SHS achieves its drag reduction by affecting the turbulence structures within the buffer layer of wall-bounded turbulent flow. It was also found that the width of an SHS, relative to the spanwise width of near-wall turbulence structures, was also a key parameter to the total amount of drag reduction. Significant suppression of near-wall turbulence structures were observed, which resulted in large skin-friction drag reduction due to the lack of the shear over SHSs. A comparison between TBLs and turbulent channel flows over SHSs were also examined. In contrast to fully developed turbulent channel flows, the effective slip velocity and hence the effective slip length varied in the streamwise direction of TBL, implying that total drag reduction of TBL would depend on the streamwise length of a given SHS. The present numerical study was compared with recent experimental results and showed good agreement. In addition to flow and SHS geometry conditions, the streamwise length of SHSs was also a key factor to understand the underlying physics of wall-bounded shear flows. Finally, it was found that the amount of drag reduction was theoretically estimated as a function of the effective slip length normalized by viscous wall units.

Ice Adhesion

Ice Adhesion
Author: K. L. Mittal
Publisher: John Wiley & Sons
Total Pages: 704
Release: 2020-12-15
Genre: Technology & Engineering
ISBN: 1119640377

This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.