Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016

Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016
Author: Sebastien Ourselin
Publisher: Springer
Total Pages: 666
Release: 2016-10-17
Genre: Computers
ISBN: 3319467263

The three-volume set LNCS 9900, 9901, and 9902 constitutes the refereed proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, held in Athens, Greece, in October 2016. Based on rigorous peer reviews, the program committee carefully selected 228 revised regular papers from 756 submissions for presentation in three volumes. The papers have been organized in the following topical sections: Part I: brain analysis, brain analysis - connectivity; brain analysis - cortical morphology; Alzheimer disease; surgical guidance and tracking; computer aided interventions; ultrasound image analysis; cancer image analysis; Part II: machine learning and feature selection; deep learning in medical imaging; applications of machine learning; segmentation; cell image analysis; Part III: registration and deformation estimation; shape modeling; cardiac and vascular image analysis; image reconstruction; and MR image analysis.

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
Total Pages: 369
Release: 2019-01-29
Genre: Medical
ISBN: 3319948784

This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Artificial Intelligence and Image Processing in Medical Imaging

Artificial Intelligence and Image Processing in Medical Imaging
Author: Walid A. Zgallai
Publisher: Elsevier
Total Pages: 437
Release: 2024-01-18
Genre: Science
ISBN: 0323954634

Artificial Intelligence and Image Processing in Medical Imaging deals with the applications of processing medical images with a view of improving the quality of the data in order to facilitate better decision- making. The book covers the basics of medical imaging and the fundamentals of image processing. It explains spatial and frequency domain applications of image processing, introduces image compression techniques and their applications, and covers image segmentation techniques and their applications. The book includes object detection and classification applications and provides an overall background to statistical analysis in biomedical systems. The role of Machine Learning, including Neural Networks, Deep Learning, and the implications of the expansion of artificial intelligence is also covered. With contributions from prominent researchers worldwide, this book provides up-to-date and comprehensive coverage of AI applications in image processing where readers will find the latest information with clear examples and illustrations. - Provides the latest comprehensive coverage of the developments of AI techniques and the principles of medical imaging - Covers all aspects of medical imaging, from acquisition, the use of hardware and software, image analysis and implementation of AI in problem solving - Provides examples of medical imaging and how they're processed, including segmentation, classification, and detection

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022

Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
Author: Linwei Wang
Publisher: Springer Nature
Total Pages: 842
Release: 2022-09-16
Genre: Computers
ISBN: 3031164466

The eight-volume set LNCS 13431, 13432, 13433, 13434, 13435, 13436, 13437, and 13438 constitutes the refereed proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022, which was held in Singapore in September 2022. The 574 revised full papers presented were carefully reviewed and selected from 1831 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: Brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; heart and lung imaging; dermatology; Part II: Computational (integrative) pathology; computational anatomy and physiology; ophthalmology; fetal imaging; Part III: Breast imaging; colonoscopy; computer aided diagnosis; Part IV: Microscopic image analysis; positron emission tomography; ultrasound imaging; video data analysis; image segmentation I; Part V: Image segmentation II; integration of imaging with non-imaging biomarkers; Part VI: Image registration; image reconstruction; Part VII: Image-Guided interventions and surgery; outcome and disease prediction; surgical data science; surgical planning and simulation; machine learning – domain adaptation and generalization; Part VIII: Machine learning – weakly-supervised learning; machine learning – model interpretation; machine learning – uncertainty; machine learning theory and methodologies.

ECAI 2020

ECAI 2020
Author: G. De Giacomo
Publisher: IOS Press
Total Pages: 3122
Release: 2020-09-11
Genre: Computers
ISBN: 164368101X

This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of more than 1,700 submissions was received for ECAI 2020, of which 1,443 were reviewed. Of these, 361 full-papers and 36 highlight papers were accepted (an acceptance rate of 25% for full-papers and 45% for highlight papers). The book is divided into three sections: ECAI full papers; ECAI highlight papers; and PAIS papers. The topics of these papers cover all aspects of AI, including Agent-based and Multi-agent Systems; Computational Intelligence; Constraints and Satisfiability; Games and Virtual Environments; Heuristic Search; Human Aspects in AI; Information Retrieval and Filtering; Knowledge Representation and Reasoning; Machine Learning; Multidisciplinary Topics and Applications; Natural Language Processing; Planning and Scheduling; Robotics; Safe, Explainable, and Trustworthy AI; Semantic Technologies; Uncertainty in AI; and Vision. The book will be of interest to all those whose work involves the use of AI technology.

Simulation and Synthesis in Medical Imaging

Simulation and Synthesis in Medical Imaging
Author: Jelmer M. Wolterink
Publisher: Springer Nature
Total Pages: 151
Release: 2023-10-06
Genre: Computers
ISBN: 3031446895

This book constitutes the refereed proceedings of the 8th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2023, held in conjunction with MICCAI 2023, in Vancouver, Canada, in October 2023. The 13 full papers included in this book were carefully reviewed and selected from 16 submissions. They span a wide range of topics relevant to SASHIMI, and reflect recent developments in methods for segmentation, image-to-image translation, super-resolution, and image synthesis. Applications include MRI imaging, echocardiography, PET, and digital pathology.

Simulation and Synthesis in Medical Imaging

Simulation and Synthesis in Medical Imaging
Author: David Svoboda
Publisher: Springer Nature
Total Pages: 154
Release: 2021-09-21
Genre: Computers
ISBN: 303087592X

This book constitutes the refereed proceedings of the 6th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.* The 14 full papers presented were carefully reviewed and selected from 18 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/ microscopy image synthesis, and several applications of image synthesis and simulation for data augmentation, image enhancement, or segmentation. *The workshop was held virtually.

Whole Slide Imaging

Whole Slide Imaging
Author: Anil V. Parwani
Publisher: Springer Nature
Total Pages: 253
Release: 2021-10-29
Genre: Medical
ISBN: 3030833321

This book provides up-to-date and practical knowledge in all aspects of whole slide imaging (WSI) by experts in the field. This includes a historical perspective on the evolution of this technology, technical aspects of making a great whole slide image, the various applications of whole slide imaging and future applications using WSI for computer-aided diagnosis The goal is to provide practical knowledge and address knowledge gaps in this emerging field. This book is unique because it addresses an emerging area in pathology for which currently there is only limited information about the practical aspects of deploying this technology. For example, there are no established selection criteria for choosing new scanners and a knowledge base with the key information. The authors of the various chapters have years of real-world experience in selecting and implementing WSI solutions in various aspects of pathology practice. This text also discusses practical tips and pearls to address the selection of a WSI vendor, technology details, implementing this technology and provide an overview of its everyday uses in all areas of pathology. Chapters include important information on how to integrate digital slides with laboratory information system and how to streamline the “digital workflow” with the intent of saving time, saving money, reducing errors, improving efficiency and accuracy, and ultimately benefiting patient outcomes. Whole Slide Imaging: Current Applications and Future Directions is designed to present a comprehensive and state-of the-art approach to WSI within the broad area of digital pathology. It aims to give the readers a look at WSI with a deeper lens and also envision the future of pathology imaging as it pertains to WSI and associated digital innovations.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
Author: Marleen de Bruijne
Publisher: Springer Nature
Total Pages: 676
Release: 2021-09-23
Genre: Computers
ISBN: 3030871991

The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound *The conference was held virtually.

3D Imaging in Medicine

3D Imaging in Medicine
Author: Karl H. Höhne
Publisher: Springer Science & Business Media
Total Pages: 449
Release: 2012-12-06
Genre: Computers
ISBN: 3642842119

The visualization of human anatomy for diagnostic, therapeutic, and educational pur poses has long been a challenge for scientists and artists. In vivo medical imaging could not be introduced until the discovery of X-rays by Wilhelm Conrad ROntgen in 1895. With the early medical imaging techniques which are still in use today, the three-dimensional reality of the human body can only be visualized in two-dimensional projections or cross-sections. Recently, biomedical engineering and computer science have begun to offer the potential of producing natural three-dimensional views of the human anatomy of living subjects. For a broad application of such technology, many scientific and engineering problems still have to be solved. In order to stimulate progress, the NATO Advanced Research Workshop in Travemiinde, West Germany, from June 25 to 29 was organized. It brought together approximately 50 experts in 3D-medical imaging from allover the world. Among the list of topics image acquisition was addressed first, since its quality decisively influences the quality of the 3D-images. For 3D-image generation - in distinction to 2D imaging - a decision has to be made as to which objects contained in the data set are to be visualized. Therefore special emphasis was laid on methods of object definition. For the final visualization of the segmented objects a large variety of visualization algorithms have been proposed in the past. The meeting assessed these techniques.