Study of Flow Patterns and Void Fraction in Inclined Two Phase Flow

Study of Flow Patterns and Void Fraction in Inclined Two Phase Flow
Author: Adekunle Lukman Oyewole
Publisher:
Total Pages: 141
Release: 2013
Genre:
ISBN:

In the field of multiphase flow, much research has been done on flow patterns and void fraction in vertical upward, vertical downward and horizontal pipes with only very little investigation done in inclined pipes. Experimental investigation was conducted in present study over six pipe orientations (+5°, +10°, +20°, -5°, -10° & -20°) using air-water as fluid combination in a 12.7 mm diameter pipe. Flow visualization was conducted for flow pattern identification, flow pattern maps were developed showing effect of pipe orientation on flow pattern transition boundaries and 700 void fraction data points were measured and analyzed. Effect of pipe orientation on void fraction was also observed and reported. Fourteen void fraction correlations were selected for experimental data prediction based on previous works and the best performing void fraction correlation for upward inclined pipe, downward inclined pipe and near horizontal pipe orientation was determined. A unique phenomenon called flow reversal in co-current two phase flow was observed in upward inclined pipe orientation and investigated in present study. Flow reversal was investigated using Bernoulli's equation and dimensionless numbers (Froude, Reynolds & Weber number) which gave in-depth analysis of this phenomenon.

Two-Phase Gas-Liquid Flow in Pipes with Different Orientations

Two-Phase Gas-Liquid Flow in Pipes with Different Orientations
Author: Afshin J. Ghajar
Publisher: Springer
Total Pages: 0
Release: 2020-03-15
Genre: Science
ISBN: 9783030416256

This book provides design engineers using gas-liquid two-phase flow in different industrial applications the necessary fundamental understanding of the two-phase flow variables. Two-phase flow literature reports a plethora of correlations for determination of flow patterns, void fraction, two- phase pressure drop and non-boiling heat transfer correlations. However, the validity of a majority of these correlations is restricted over a narrow range of two -phase flow conditions. Consequently, it is quite a challenging task for the end user to select an appropriate correlation/model for the type of two-phase flow under consideration. Selection of a correct correlation also requires some fundamental understanding of the two-phase flow physics and the underlying principles/assumptions/limitations associated with these correlations. Thus, it is of significant interest for a design engineer to have knowledge of the flow patterns and their transitions and their influence on two-phase flow variables. To address some of these issues and facilitate selection of appropriate two-phase flow models, this volume presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommend some of the well scrutinized modeling techniques.

Frontiers and Progress in Multiphase Flow I

Frontiers and Progress in Multiphase Flow I
Author: Lixin Cheng
Publisher: Springer Science & Business Media
Total Pages: 215
Release: 2014-04-09
Genre: Technology & Engineering
ISBN: 3319043587

This volume presents state-of-the-art of reviews in the field of multiphase flow. In focusses on nonlinear aspects of multiphase flow networks as well as visualization experiments. The first chapter presents nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The second chapter reviews two-phase flow dynamics in combination with complex network theory. The third chapter discusses evaporation mechanism in the wick of copper heat pipes. The last chapter investigates numerically the flow dynamics and heat and mass transfer in the laminar and turbulent boundary layer on the flat vertical plate.

Two-Phase Gas-Liquid Flow in Pipes with Different Orientations

Two-Phase Gas-Liquid Flow in Pipes with Different Orientations
Author: Afshin J. Ghajar
Publisher: Springer Nature
Total Pages: 136
Release: 2020-03-14
Genre: Science
ISBN: 3030416267

This book provides design engineers using gas-liquid two-phase flow in different industrial applications the necessary fundamental understanding of the two-phase flow variables. Two-phase flow literature reports a plethora of correlations for determination of flow patterns, void fraction, two- phase pressure drop and non-boiling heat transfer correlations. However, the validity of a majority of these correlations is restricted over a narrow range of two -phase flow conditions. Consequently, it is quite a challenging task for the end user to select an appropriate correlation/model for the type of two-phase flow under consideration. Selection of a correct correlation also requires some fundamental understanding of the two-phase flow physics and the underlying principles/assumptions/limitations associated with these correlations. Thus, it is of significant interest for a design engineer to have knowledge of the flow patterns and their transitions and their influence on two-phase flow variables. To address some of these issues and facilitate selection of appropriate two-phase flow models, this volume presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommend some of the well scrutinized modeling techniques.

Two-Phase Flow

Two-Phase Flow
Author: Cl Kleinstreuer
Publisher: Routledge
Total Pages: 472
Release: 2017-11-01
Genre: Science
ISBN: 1351406485

This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.

Modelling and Experimentation in Two-Phase Flow

Modelling and Experimentation in Two-Phase Flow
Author: Volfango Bertola
Publisher: CISM International Centre for Mechanical Sciences
Total Pages: 450
Release: 2003
Genre: Science
ISBN:

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.