Understanding Analysis

Understanding Analysis
Author: Stephen Abbott
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2012-12-06
Genre: Mathematics
ISBN: 0387215069

This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.

Book of Proof

Book of Proof
Author: Richard H. Hammack
Publisher:
Total Pages: 314
Release: 2016-01-01
Genre: Mathematics
ISBN: 9780989472111

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Student Solutions Manual for Basic College Mathematics with Early Integers

Student Solutions Manual for Basic College Mathematics with Early Integers
Author: Elayn Martin-Gay
Publisher:
Total Pages: 364
Release: 2015-10-14
Genre: Education
ISBN: 9780133864816

The Student Solutions Manual is available as part of the Student Study Pack. It contains worked-out solutions to odd-numbered exercises from each section exercise set, Practice Problems, Mental Math exercises, and all exercises found in the Chapter Review and Chapter Tests.

Calculus

Calculus
Author: Morris Kline
Publisher: Courier Corporation
Total Pages: 962
Release: 2013-05-09
Genre: Mathematics
ISBN: 0486134768

Application-oriented introduction relates the subject as closely as possible to science with explorations of the derivative; differentiation and integration of the powers of x; theorems on differentiation, antidifferentiation; the chain rule; trigonometric functions; more. Examples. 1967 edition.

A Programmer's Introduction to Mathematics

A Programmer's Introduction to Mathematics
Author: Jeremy Kun
Publisher:
Total Pages: 400
Release: 2020-05-17
Genre:
ISBN:

A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.

Invitation to Discrete Mathematics

Invitation to Discrete Mathematics
Author: Jiří Matoušek
Publisher: Oxford University Press
Total Pages: 462
Release: 2009
Genre: Mathematics
ISBN: 0198570430

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.

How to Prove It

How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
Total Pages: 401
Release: 2006-01-16
Genre: Mathematics
ISBN: 0521861241

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

Algebra and Trigonometry

Algebra and Trigonometry
Author: Jay P. Abramson
Publisher:
Total Pages: 1564
Release: 2015-02-13
Genre: Algebra
ISBN: 9781938168376

"The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs."--Page 1.

Prealgebra 2e

Prealgebra 2e
Author: Lynn Marecek
Publisher:
Total Pages: 1148
Release: 2020-03-11
Genre:
ISBN: 9781680923261

The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.