Structure And Bifurcations Of Dynamical Systems
Download Structure And Bifurcations Of Dynamical Systems full books in PDF, epub, and Kindle. Read online free Structure And Bifurcations Of Dynamical Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maoan Han |
Publisher | : World Scientific |
Total Pages | : 476 |
Release | : 1997-11-29 |
Genre | : Mathematics |
ISBN | : 9814501093 |
Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.
Author | : Yuri Kuznetsov |
Publisher | : Springer Science & Business Media |
Total Pages | : 648 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475739788 |
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Author | : Willy J. F. Govaerts |
Publisher | : SIAM |
Total Pages | : 384 |
Release | : 2000-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719543 |
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Author | : Pascal Chossat |
Publisher | : World Scientific Publishing Company |
Total Pages | : 422 |
Release | : 2000-02-28 |
Genre | : Science |
ISBN | : 9813105445 |
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Author | : Yuri A. Kuznetsov |
Publisher | : Cambridge University Press |
Total Pages | : 424 |
Release | : 2019-03-28 |
Genre | : Mathematics |
ISBN | : 1108695140 |
This book combines a comprehensive state-of-the-art analysis of bifurcations of discrete-time dynamical systems with concrete instruction on implementations (and example applications) in the free MATLABĀ® software MatContM developed by the authors. While self-contained and suitable for independent study, the book is also written with users in mind and is an invaluable reference for practitioners. Part I focuses on theory, providing a systematic presentation of bifurcations of fixed points and cycles of finite-dimensional maps, up to and including cases with two control parameters. Several complementary methods, including Lyapunov exponents, invariant manifolds and homoclinic structures, and parts of chaos theory, are presented. Part II introduces MatContM through step-by-step tutorials on how to use the general numerical methods described in Part I for simple dynamical models defined by one- and two-dimensional maps. Further examples in Part III show how MatContM can be used to analyze more complicated models from modern engineering, ecology, and economics.
Author | : James D. Meiss |
Publisher | : SIAM |
Total Pages | : 410 |
Release | : 2017-01-24 |
Genre | : Mathematics |
ISBN | : 161197464X |
Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.
Author | : Shouhong Wang |
Publisher | : World Scientific |
Total Pages | : 391 |
Release | : 2005-06-27 |
Genre | : Science |
ISBN | : 9814480592 |
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.
Author | : Remco I. Leine |
Publisher | : Springer Science & Business Media |
Total Pages | : 245 |
Release | : 2013-03-19 |
Genre | : Mathematics |
ISBN | : 3540443983 |
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Author | : Freddy Dumortier |
Publisher | : |
Total Pages | : 240 |
Release | : 2014-01-15 |
Genre | : |
ISBN | : 9783662191552 |
Author | : Eusebius Doedel |
Publisher | : Springer Science & Business Media |
Total Pages | : 482 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461212081 |
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.