Differentiable Dynamical Systems

Differentiable Dynamical Systems
Author: Lan Wen
Publisher: American Mathematical Soc.
Total Pages: 207
Release: 2016-07-20
Genre: Mathematics
ISBN: 1470427990

This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the Ω-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to [email protected] for more information.

Lectures on Dynamical Systems, Structural Stability, and Their Applications

Lectures on Dynamical Systems, Structural Stability, and Their Applications
Author: Kotik K. Lee
Publisher: World Scientific
Total Pages: 476
Release: 1992
Genre: Science
ISBN: 9789971509651

The communication of knowledge on nonlinear dynamical systems, between the mathematicians working on the analytic approach and the scientists working mostly on the applications and numerical simulations has been less than ideal. This volume hopes to bridge the gap between books written on the subject by mathematicians and those written by scientists. The second objective of this volume is to draw attention to the need for cross-fertilization of knowledge between the physical and biological scientists. The third aim is to provide the reader with a personal guide on the study of global nonlinear dynamical systems.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
Total Pages: 648
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475739788

Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations
Author: V.I. Arnold
Publisher: Springer Science & Business Media
Total Pages: 366
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210372

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Structural Stability And Morphogenesis

Structural Stability And Morphogenesis
Author: Rene Thom
Publisher: CRC Press
Total Pages: 404
Release: 2018-03-05
Genre: Mathematics
ISBN: 042996157X

First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.

Stability of Dynamical Systems

Stability of Dynamical Systems
Author: Xiaoxin Liao
Publisher: Elsevier
Total Pages: 719
Release: 2007-08-01
Genre: Mathematics
ISBN: 0080550614

The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems. - Presents comprehensive theory and methodology of stability analysis - Can be used as textbook for graduate students in applied mathematics, mechanics, control theory, theoretical physics, mathematical biology, information theory, scientific computation - Serves as a comprehensive handbook of stability theory for practicing aerospace, control, mechanical, structural, naval and civil engineers

Geometric Theory of Dynamical Systems

Geometric Theory of Dynamical Systems
Author: J. Jr. Palis
Publisher: Springer Science & Business Media
Total Pages: 208
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461257034

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.

Dynamical Systems on Surfaces

Dynamical Systems on Surfaces
Author: C. Godbillon
Publisher: Springer Science & Business Media
Total Pages: 209
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642686265

These notes are an elaboration of the first part of a course on foliations which I have given at Strasbourg in 1976 and at Tunis in 1977. They are concerned mostly with dynamical sys tems in dimensions one and two, in particular with a view to their applications to foliated manifolds. An important chapter, however, is missing, which would have been dealing with structural stability. The publication of the French edition was re alized by-the efforts of the secretariat and the printing office of the Department of Mathematics of Strasbourg. I am deeply grateful to all those who contributed, in particular to Mme. Lambert for typing the manuscript, and to Messrs. Bodo and Christ for its reproduction. Strasbourg, January 1979. Table of Contents I. VECTOR FIELDS ON MANIFOLDS 1. Integration of vector fields. 1 2. General theory of orbits. 13 3. Irlvariant and minimaI sets. 18 4. Limit sets. 21 5. Direction fields. 27 A. Vector fields and isotopies. 34 II. THE LOCAL BEHAVIOUR OF VECTOR FIELDS 39 1. Stability and conjugation. 39 2. Linear differential equations. 44 3. Linear differential equations with constant coefficients. 47 4. Linear differential equations with periodic coefficients. 50 5. Variation field of a vector field. 52 6. Behaviour near a singular point. 57 7. Behaviour near a periodic orbit. 59 A. Conjugation of contractions in R. 67 III. PLANAR VECTOR FIELDS 75 1. Limit sets in the plane. 75 2. Periodic orbits. 82 3. Singular points. 90 4. The Poincare index.

Stability of Structures

Stability of Structures
Author: Z. P. Ba?ant
Publisher: World Scientific
Total Pages: 1039
Release: 2010
Genre: Technology & Engineering
ISBN: 9814317020

A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.