Structural Engineering World Wide 1998

Structural Engineering World Wide 1998
Author: N.K. Srivastava
Publisher:
Total Pages: 1044
Release: 1998
Genre: Technology & Engineering
ISBN:

Contains complete proceedings of SEWC '98 held in San Francisco, July 19-23, 1998.

The Science Of Structural Engineering

The Science Of Structural Engineering
Author: Jacques Heyman
Publisher: World Scientific
Total Pages: 119
Release: 1999-11-18
Genre: Technology & Engineering
ISBN: 1783261927

Structures cannot be created without engineering theory, and design rules have existed from the earliest times for building Greek temples, Roman aqueducts and Gothic cathedrals — and later, for steel skyscrapers and the frames for aircraft. This book is, however, not concerned with the description of historical feats, but with the way the structural engineer sets about his business. Galileo, in the seventeenth century, was the first to introduce recognizably modern science into the calculation of structures; he determined the breaking strength of beams. In the eighteenth century engineers moved away from this ‘ultimate load’ approach, and early in the nineteenth century a formal philosophy of design had been established — a structure should remain elastic, with a safety factor on stress built into the analysis. This philosophy held sway for over a century, until the first tests on real structures showed that the stresses confidently calculated by designers could not actually be measured in practice. Structural engineering has taken a completely different path since the middle of the twentieth century; plastic analysis reverts to Galileo's objective of the calculation of ultimate strength, and powerful new theorems now underpin the activities of the structural engineer.This book deals with a technical subject, but the presentation is completely non-mathematical. It makes available to the engineer, the architect and the general reader the principles of structural design./a

Facing the Challenges in Structural Engineering

Facing the Challenges in Structural Engineering
Author: Hugo Rodrigues
Publisher: Springer
Total Pages: 513
Release: 2017-07-11
Genre: Science
ISBN: 3319619144

This edited volume brings together findings and case studies on fundamental and applied aspects of structural engineering, applied to buildings, bridges and infrastructures in general. It focuses on the application of advanced experimental and numerical techniques and new technologies to the built environment. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.

The History of the Theory of Structures

The History of the Theory of Structures
Author: Karl-Eugen Kurrer
Publisher: John Wiley & Sons
Total Pages: 1242
Release: 2018-07-23
Genre: Technology & Engineering
ISBN: 3433032297

Ten years after the publication of the first English edition of The History of the Theory of Structures, Dr. Kurrer now gives us a much enlarged second edition with a new subtitle: Searching for Equilibrium. The author invites the reader to take part in a journey through time to explore the equilibrium of structures. That journey starts with the emergence of the statics and strength of materials of Leonardo da Vinci and Galileo, and reaches its first climax with Coulomb's structural theories for beams, earth pressure and arches in the late 18th century. Over the next 100 years, Navier, Culmann, Maxwell, Rankine, Mohr, Castigliano and Müller-Breslau moulded theory of structures into a fundamental engineering science discipline that - in the form of modern structural mechanics - played a key role in creating the design languages of the steel, reinforced concrete, aircraft, automotive and shipbuilding industries in the 20th century. In his portrayal, the author places the emphasis on the formation and development of modern numerical engineering methods such as FEM and describes their integration into the discipline of computational mechanics. Brief insights into customary methods of calculation backed up by historical facts help the reader to understand the history of structural mechanics and earth pressure theory from the point of view of modern engineering practice. This approach also makes a vital contribution to the teaching of engineers. Dr. Kurrer manages to give us a real feel for the different approaches of the players involved through their engineering science profiles and personalities, thus creating awareness for the social context. The 260 brief biographies convey the subjective aspect of theory of structures and structural mechanics from the early years of the modern era to the present day. Civil and structural engineers and architects are well represented, but there are also biographies of mathematicians, physicists, mechanical engineers and aircraft and ship designers. The main works of these protagonists of theory of structures are reviewed and listed at the end of each biography. Besides the acknowledged figures in theory of structures such as Coulomb, Culmann, Maxwell, Mohr, Müller-Breslau, Navier, Rankine, Saint-Venant, Timoshenko and Westergaard, the reader is also introduced to G. Green, A. N. Krylov, G. Li, A. J. S. Pippard, W. Prager, H. A. Schade, A. W. Skempton, C. A. Truesdell, J. A. L. Waddell and H. Wagner. The pioneers of the modern movement in theory of structures, J. H. Argyris, R. W. Clough, T. v. Kármán, M. J. Turner and O. C. Zienkiewicz, are also given extensive biographical treatment. A huge bibliography of about 4,500 works rounds off the book. New content in the second edition deals with earth pressure theory, ultimate load method, an analysis of historical textbooks, steel bridges, lightweight construction, theory of plates and shells, Green's function, computational statics, FEM, computer-assisted graphical analysis and historical engineering science. The number of pages now exceeds 1,200 - an increase of 50% over the first English edition. This book is the first all-embracing historical account of theory of structures from the 16th century to the present day.

Advances and Challenges in Structural Engineering

Advances and Challenges in Structural Engineering
Author: Hugo Rodrigues
Publisher: Springer
Total Pages: 420
Release: 2018-10-27
Genre: Science
ISBN: 3030019322

This edited volume on challenges in structural and bridge engineering brings together contributions to this important area of engineering research. The volume presents findings and case studies on fundamental and applied aspects of structural engineering, applied to buildings, bridges and infrastructures in general, and heritage patrimony. The scope of the volume focuses on the application of advanced experimental and numerical techniques and new technologies to the built environment. The volume is based on the best contributions to the 2nd GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2018 – The official international congress of the Soil-Structure Interaction Group in Egypt (SSIGE).

Structural Engineering, Mechanics and Computation

Structural Engineering, Mechanics and Computation
Author: A. Zingoni
Publisher: Elsevier
Total Pages: 1704
Release: 2001-03-16
Genre: Technology & Engineering
ISBN: 0080541925

Following on from the International Conference on Structural Engineering, Mechanics and Computation, held in Cape Town in April 2001, this book contains the Proceedings, in two volumes. There are over 170 papers written by Authors from around 40 countries worldwide. The contributions include 6 Keynote Papers and 12 Special Invited Papers. In line with the aims of the SEMC 2001 International Conference, and as may be seen from the List of Contents, the papers cover a wide range of topics under a variety of themes. There is a healthy balance between papers of a theoretical nature, concerned with various aspects of structural mechanics and computational issues, and those of a more practical nature, addressing issues of design, safety and construction. As the contributions in these Proceedings show, new and more efficient methods of structural analysis and numerical computation are being explored all the time, while exciting structural materials such as glass have recently come onto the scene. Research interest in the repair and rehabilitation of existing infrastructure continues to grow, particularly in Europe and North America, while the challenges to protect human life and property against the effects of fire, earthquakes and other hazards are being addressed through the development of more appropriate design methods for buildings, bridges and other engineering structures.