Strategic allocation of resources using linear programming model with parametric analysis: in MATLAB and Excel Solver

Strategic allocation of resources using linear programming model with parametric analysis: in MATLAB and Excel Solver
Author: Dinesh Gupta
Publisher: diplom.de
Total Pages: 73
Release: 2014-05-01
Genre: Computers
ISBN: 3954897806

Since the late 1940s, linear programming models have been used for many different purposes. Airline companies apply these models to optimize their use of planes and staff. NASA has been using them for years to optimize their use of limited resources. Oil companies use them to optimize their refinery operations. Small and medium-sized businesses use linear programming to solve a huge variety of problems, often involving resource allocation. In my study, a typical product-mix problem in a manufacturing system producing two products (each product consists of two sub-assemblies) is solved for ist optimal solution through the use of the latest versions of MATLAB having the command simlp, which is very much like linprog. As analysts, we try to find a good enough solution for the decision maker to make a final decision. Our attempt is to give the mathematical description of the product-mix optimization problem and bring the problem into a form ready to call MATLAB’s simlp command. The objective of this study is to find the best product mix that maximizes profit. The graph obtained using MATLAB commands, give the shaded area enclosed by the constraints called the feasible region, which is the set of points satisfying all the constraints. To find the optimal solution we look at the lines of equal profit to find the corner of the feasible region which yield the highest profit. This corner can be found out at the farthest line of equal profit, which still touches the feasible region. The most critical part is the sensitivity analysis, using Excel Solver, and Parametric Analysis, using computer software, which allows us to study the effect on optimal solution due to discrete and continuous change in parameters of the LP model including to identify bottlenecks. We have examined other options like product outsourcing, one-time cost, cross training of one operator, manufacturing of hypothetical third product on under-utilized machines and optimal sequencing of jobs on machines.

Strategic Allocation of Resources Using Linear Programming Model with Parametric Analysis

Strategic Allocation of Resources Using Linear Programming Model with Parametric Analysis
Author: Dinesh Gupta
Publisher: GRIN Verlag
Total Pages: 74
Release: 2014-03-31
Genre: Technology & Engineering
ISBN: 3656625417

Master's Thesis from the year 2013 in the subject Engineering - Industrial Engineering and Management, grade: Good, LMU Munich (Dr. B R Ambedkar National Institute of Technology, Jalandhar), course: Industrial Engg., language: English, abstract: Since the late 1940s, linear programming models have been used for many different purposes. Airline companies apply these models to optimize their use of planes and staff. NASA has been using them for many years to optimize their use of limited resources. Oil companies use them to optimize their refinery operations. Small and medium-sized businesses use linear programming to solve a huge variety of problems, often involving resource allocation. In my study, a typical product-mix problem in a manufacturing system producing two products (each product consists of two sub-assemblies) is solved for its optimal solution through the use of the latest versions of MATLAB having the command simlp, which is very much like linprog. As analysts, we try to find a good enough solution for the decision maker to make a final decision. Our attempt is to give the mathematical description of the product-mix optimization problem and bring the problem into a form ready to call MATLAB’s simlp command. The objective of this paper is to find the best product mix that maximizes profit. The graph obtained using MATLAB commands, give the shaded area enclosed by the constraints called the feasible region, which is the set of points satisfying all the constraints. To find the optimal solution we look at the lines of equal profit to find the corner of the feasible region which yield the highest profit. This corner can be found out at the farthest line of equal profit which still touches the feasible region. The most critical part is the sensitivity analysis using Excel Solver and Parametric Analysis using computer software which allows us to study the effect on optimal solution due to discrete and continuous change in parameters of the LP model including to identify bottlenecks. We have examined other options like product outsourcing, one-time cost, cross training of one operator, manufacturing of hypothetical third product on under-utilized machines and optimal sequencing of jobs on machines.

Optimization Methods in Finance

Optimization Methods in Finance
Author: Gerard Cornuejols
Publisher: Cambridge University Press
Total Pages: 358
Release: 2006-12-21
Genre: Mathematics
ISBN: 9780521861700

Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Optimization in Practice with MATLAB

Optimization in Practice with MATLAB
Author: Achille Messac
Publisher: Cambridge University Press
Total Pages: 503
Release: 2015-03-19
Genre: Computers
ISBN: 1107109183

This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.

Optimization in Operations Research

Optimization in Operations Research
Author: Ronald L. Rardin
Publisher: Prentice Hall
Total Pages: 936
Release: 2014-01-01
Genre: Mathematical optimization
ISBN: 9780132858113

For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.

Engineering Design Optimization

Engineering Design Optimization
Author: Joaquim R. R. A. Martins
Publisher: Cambridge University Press
Total Pages: 653
Release: 2021-11-18
Genre: Mathematics
ISBN: 110898861X

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.

Programming for Computations - MATLAB/Octave

Programming for Computations - MATLAB/Octave
Author: Svein Linge
Publisher: Springer
Total Pages: 228
Release: 2016-08-01
Genre: Computers
ISBN: 3319324527

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Simulation Modeling and Analysis with Expertfit Software

Simulation Modeling and Analysis with Expertfit Software
Author: Averill Law
Publisher: McGraw-Hill Science/Engineering/Math
Total Pages: 792
Release: 2006-07-21
Genre: Technology & Engineering
ISBN: 9780073294414

Since the publication of the first edition in 1982, the goal of Simulation Modeling and Analysis has always been to provide a comprehensive, state-of-the-art, and technically correct treatment of all important aspects of a simulation study. The book strives to make this material understandable by the use of intuition and numerous figures, examples, and problems. It is equally well suited for use in university courses, simulation practice, and self study. The book is widely regarded as the “bible” of simulation and now has more than 100,000 copies in print. The book can serve as the primary text for a variety of courses; for example: • A first course in simulation at the junior, senior, or beginning-graduate-student level in engineering, manufacturing, business, or computer science (Chaps. 1 through 4, and parts of Chaps. 5 through 9). At the end of such a course, the students will be prepared to carry out complete and effective simulation studies, and to take advanced simulation courses. • A second course in simulation for graduate students in any of the above disciplines (most of Chaps. 5 through 12). After completing this course, the student should be familiar with the more advanced methodological issues involved in a simulation study, and should be prepared to understand and conduct simulation research. • An introduction to simulation as part of a general course in operations research or management science (part of Chaps. 1, 3, 5, 6, and 9).

Ant Colony Optimization

Ant Colony Optimization
Author: Marco Dorigo
Publisher: MIT Press
Total Pages: 324
Release: 2004-06-04
Genre: Computers
ISBN: 9780262042192

An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.

Linear and Nonlinear Programming

Linear and Nonlinear Programming
Author: David G. Luenberger
Publisher: Springer Science & Business Media
Total Pages: 546
Release: 2008-06-20
Genre: Business & Economics
ISBN: 0387745033

This third edition of the classic textbook in Optimization has been fully revised and updated. It comprehensively covers modern theoretical insights in this crucial computing area, and will be required reading for analysts and operations researchers in a variety of fields. The book connects the purely analytical character of an optimization problem, and the behavior of algorithms used to solve it. Now, the third edition has been completely updated with recent Optimization Methods. The book also has a new co-author, Yinyu Ye of California’s Stanford University, who has written lots of extra material including some on Interior Point Methods.