Stochastic Systems The Mathematics Of Filtering And Identification And Applications
Download Stochastic Systems The Mathematics Of Filtering And Identification And Applications full books in PDF, epub, and Kindle. Read online free Stochastic Systems The Mathematics Of Filtering And Identification And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michiel Hazewinkel |
Publisher | : Springer Science & Business Media |
Total Pages | : 655 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9400985460 |
In the last five years or so there has been an important renaissance in the area of (mathematical) modeling, identification and (stochastic) control. It was the purpose of the Advanced Study Institute of which the present volume constitutes the proceedings to review recent developments in this area with par ticular emphasis on identification and filtering and to do so in such a manner that the material is accessible to a wide variety of both embryo scientists and the various breeds of established researchers to whom identification, filtering, etc. are important (such as control engineers, time series analysts, econometricians, probabilists, mathematical geologists, and various kinds of pure and applied mathematicians; all of these were represented at the ASI). For these proceedings we have taken particular care to see to it that the material presented will be understandable for a quite diverse audience. To that end we have added a fifth tutorial section (besides the four presented at the meeting) and have also included an extensive introduction which explains in detail the main problem areas and themes of these proceedings and which outlines how the various contributions fit together to form a coherent, integrated whole. The prerequisites needed to understand the material in this volume are modest and most graduate students in e. g. mathematical systems theory, applied mathematics, econo metrics or control engineering will qualify.
Author | : P. R. Kumar |
Publisher | : SIAM |
Total Pages | : 371 |
Release | : 2015-12-15 |
Genre | : Mathematics |
ISBN | : 1611974259 |
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Author | : Anders Lindquist |
Publisher | : Springer |
Total Pages | : 788 |
Release | : 2015-04-24 |
Genre | : Science |
ISBN | : 3662457504 |
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
Author | : Peter E. Caines |
Publisher | : SIAM |
Total Pages | : 892 |
Release | : 2018-06-12 |
Genre | : Mathematics |
ISBN | : 1611974712 |
Linear Stochastic Systems, originally published in 1988, is today as comprehensive a reference to the theory of linear discrete-time-parameter systems as ever. Its most outstanding feature is the unified presentation, including both input-output and state space representations of stochastic linear systems, together with their interrelationships. The author first covers the foundations of linear stochastic systems and then continues through to more sophisticated topics including the fundamentals of stochastic processes and the construction of stochastic systems; an integrated exposition of the theories of prediction, realization (modeling), parameter estimation, and control; and a presentation of stochastic adaptive control theory. Written in a clear, concise manner and accessible to graduate students, researchers, and teachers, this classic volume also includes background material to make it self-contained and has complete proofs for all the principal results of the book. Furthermore, this edition includes many corrections of errata collected over the years.
Author | : |
Publisher | : |
Total Pages | : 663 |
Release | : 1981 |
Genre | : |
ISBN | : |
Author | : Louis R. Hunt |
Publisher | : |
Total Pages | : 466 |
Release | : 1984 |
Genre | : Science |
ISBN | : 9780915692378 |
Author | : M.-P. Malliavin |
Publisher | : Springer |
Total Pages | : 347 |
Release | : 2006-12-08 |
Genre | : Mathematics |
ISBN | : 3540386866 |
Author | : L. C. G. Rogers |
Publisher | : Cambridge University Press |
Total Pages | : 412 |
Release | : 2000-04-13 |
Genre | : Mathematics |
ISBN | : 9780521775946 |
Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.
Author | : Simo Särkkä |
Publisher | : Cambridge University Press |
Total Pages | : 327 |
Release | : 2019-05-02 |
Genre | : Business & Economics |
ISBN | : 1316510085 |
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author | : Nasir Uddin Ahmed |
Publisher | : World Scientific |
Total Pages | : 273 |
Release | : 1999-01-22 |
Genre | : Mathematics |
ISBN | : 9814495646 |
The book combines both rigor and intuition to derive most of the classical results of linear and nonlinear filtering and beyond. Many fundamental results recently discovered by the author are included. Furthermore, many results that have appeared in recent years in the literature are also presented. The most interesting feature of the book is that all the derivations of the linear filter equations given in Chapters 3-11, beginning from the classical Kalman filter presented in Chapters 3 and 5, are based on one basic principle which is fully rigorous but also very intuitive and easily understandable. The second most interesting feature is that the book provides a rigorous theoretical basis for the numerical solution of nonlinear filter equations illustrated by multidimensional examples. The book also provides a strong foundation for theoretical understanding of the subject based on the theory of stochastic differential equations.