Stochastic Spatial Rainfall Modelling For Hydrological Design
Download Stochastic Spatial Rainfall Modelling For Hydrological Design full books in PDF, epub, and Kindle. Read online free Stochastic Spatial Rainfall Modelling For Hydrological Design ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Renato Morbidelli |
Publisher | : Elsevier |
Total Pages | : 502 |
Release | : 2022-02-11 |
Genre | : Science |
ISBN | : 0128225440 |
Rainfall: Physical Process, Measurement, Data Analysis and Usage in Hydrological Investigations integrates different rainfall perspectives, from droplet formation and modeling developments to the experimental measurements and their analysis, to application in surface and subsurface hydrological investigations. Each chapter provides an updated representation of the involved subject with relative open problems and includes a case study at the end of the chapter. The book targets postgraduate readers studying meteorology, civil and environmental engineering, geophysics, agronomy and natural science, as well as practitioners working in the fields of hydrology, hydrogeology, agronomy and water resource management. Presents comprehensive coverage of rainfall-related topics, from the basic processes involved in the drop formation to data use and modeling Provides real-life examples for practical use in the form of a case study in each chapter
Author | : Patrick Willems |
Publisher | : IWA Publishing |
Total Pages | : 239 |
Release | : 2012-09-14 |
Genre | : Science |
ISBN | : 1780401256 |
Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems provides a state-of-the-art overview of existing methodologies and relevant results related to the assessment of the climate change impacts on urban rainfall extremes as well as on urban hydrology and hydraulics. This overview focuses mainly on several difficulties and limitations regarding the current methods and discusses various issues and challenges facing the research community in dealing with the climate change impact assessment and adaptation for urban drainage infrastructure design and management. Authors: Patrick Willems, University of Leuven, Hydraulics division; Jonas Olsson, Swedish Meteorological and Hydrological Institute; Karsten Arnbjerg-Nielsen, Technical University of Denmark, Department of Environmental Engineering; Simon Beecham, University of South Australia, School of Natural and Built Environments; Assela Pathirana, UNESCO-IHE Institute for Water Education; Ida Bulow Gregersen, Technical University of Denmark, Department of Environmental Engineering; Henrik Madsen, DHI Water & Environment, Water Resources Department; Van-Thanh-Van Nguyen, McGill University, Department of Civil Engineering and Applied Mechanics
Author | : Lars Gottschalk |
Publisher | : IAHS Press |
Total Pages | : 332 |
Release | : 1999 |
Genre | : Drought forecasting |
ISBN | : 9781901502855 |
Author | : Pukhraj Rakhecha |
Publisher | : Springer Science & Business Media |
Total Pages | : 399 |
Release | : 2010-02-17 |
Genre | : Science |
ISBN | : 1402098448 |
Water is vital for life. Since the dawn of civilization, much effort has been made to harness sources of fresh water. Recent years have raised global awareness of the need for increasing demand of water worldwide, largely because of growing population, rising standard of living, higher demand for energy, and greater appreciation for environmental quality. As an example, the world population has increased threefold in the past five decades. In order to meet the rising water demand, water resources are being developed by building large dams, reservoirs, barrages and weirs across rivers worldwide. The guiding principle for water resources development has been to ensure adequate supply of water for agriculture, domestic use (including fine drinking water), waste disposal, industries, and energy production, with due attention to maintain the ecosystem functions. This development, however, depends on a holistic, cooperative and scientific approach. The basic inputs in the assessment of water resources for a given region are from hydrological data and the subject of hydrology forms the core in achieving sustainable development of water resources. Barring a few exceptions, hydrological data for most river basins are sparse and therefore it is difficult to comprehensively assess their water resources. The major source of water is rainfall which occurs as a result of condensation of atmospheric moisture governed by the science of meteorology.
Author | : Howard Wheater |
Publisher | : Cambridge University Press |
Total Pages | : 222 |
Release | : 2007-11-22 |
Genre | : Science |
ISBN | : 1139468081 |
Arid and semi-arid regions are defined as areas where water is at its most scarce. The hydrological regime in these areas is extreme and highly variable, and they face great pressures to deliver and manage freshwater resources. However, there is no guidance on the decision support tools that are needed to underpin flood and water resource management in arid areas. UNESCO initiated the Global network for Water and Development Information for arid lands (GWADI), and arranged a workshop of the world's leading experts to discuss these issues. This book presents chapters from contributors to the workshop, and includes case studies from the world's major arid regions to demonstrate model applications, and web links to tutorials and state-of-the-art modelling software. This volume is a valuable reference for researchers and engineers working on the water resources of arid and semi-arid regions.
Author | : Assefa Melesse |
Publisher | : Elsevier |
Total Pages | : 584 |
Release | : 2019-07-03 |
Genre | : Science |
ISBN | : 0128159995 |
Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation is a compilation of contributions by experts from around the world who discuss extreme hydrology topics, from monitoring, to modeling and management. With extreme climatic and hydrologic events becoming so frequent, this book is a critical source, adding knowledge to the science of extreme hydrology. Topics covered include hydrometeorology monitoring, climate variability and trends, hydrological variability and trends, landscape dynamics, droughts, flood processes, and extreme events management, adaptation and mitigation. Each of the book's chapters provide background and theoretical foundations followed by approaches used and results of the applied studies. This book will be highly used by water resource managers and extreme event researchers who are interested in understanding the processes and teleconnectivity of large-scale climate dynamics and extreme events, predictability, simulation and intervention measures. - Presents datasets used and methods followed to support the findings included, allowing readers to follow these steps in their own research - Provides variable methodological approaches, thus giving the reader multiple hydrological modeling information to use in their work - Includes a variety of case studies, thus making the context of the book relatable to everyday working situations for those studying extreme hydrology - Discusses extreme event management, including adaption and mitigation
Author | : Soroosh Sorooshian |
Publisher | : Springer Science & Business Media |
Total Pages | : 294 |
Release | : 2008-07-18 |
Genre | : Science |
ISBN | : 3540778438 |
This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.
Author | : Guy J-P. Schumann |
Publisher | : John Wiley & Sons |
Total Pages | : 266 |
Release | : 2018-07-18 |
Genre | : Science |
ISBN | : 1119217865 |
Global Flood Hazard Subject Category Winner, PROSE Awards 2019, Earth Science Selected from more than 500 entries, demonstrating exceptional scholarship and making a significant contribution to the field of study. Flooding is a costly natural disaster in terms of damage to land, property and infrastructure. This volume describes the latest tools and technologies for modeling, mapping, and predicting large-scale flood risk. It also presents readers with a range of remote sensing data sets successfully used for predicting and mapping floods at different scales. These resources can enable policymakers, public planners, and developers to plan for, and respond to, flooding with greater accuracy and effectiveness. Describes the latest large-scale modeling approaches, including hydrological models, 2-D flood inundation models, and global flood forecasting models Showcases new tools and technologies such as Aqueduct, a new web-based tool used for global assessment and projection of future flood risk under climate change scenarios Features case studies describing best-practice uses of modeling techniques, tools, and technologies Global Flood Hazard is an indispensable resource for researchers, consultants, practitioners, and policy makers dealing with flood risk, flood disaster response, flood management, and flood mitigation.
Author | : Barbel Finkenstadt |
Publisher | : CRC Press |
Total Pages | : 314 |
Release | : 2006-10-20 |
Genre | : Mathematics |
ISBN | : 1420011057 |
Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts w
Author | : Howard S. Wheater |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2010-09-09 |
Genre | : Science |
ISBN | : 1139489720 |
Arid and semi-arid regions face major challenges in the management of scarce freshwater resources under pressures of population, economic development, climate change, pollution and over-abstraction. Groundwater is commonly the most important water resource in these areas. Groundwater models are widely used globally to understand groundwater systems and to guide decisions on management. However, the hydrology of arid and semi-arid areas is very different from that of humid regions, and there is little guidance on the special challenges of groundwater modelling for these areas. This book brings together the experience of internationally leading experts to fill a gap in the scientific and technical literature. It introduces state-of-the-art methods for modelling groundwater resources, illustrated with a wide-ranging set of illustrative examples from around the world. The book is valuable for researchers, practitioners in developed and developing countries, and graduate students in hydrology, hydrogeology, water resources management, environmental engineering and geography.