Stochastic Processes And Operator Calculus On Quantum Groups
Download Stochastic Processes And Operator Calculus On Quantum Groups full books in PDF, epub, and Kindle. Read online free Stochastic Processes And Operator Calculus On Quantum Groups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : U. Franz |
Publisher | : Springer Science & Business Media |
Total Pages | : 233 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 9401592772 |
This book aims to present several new developments on stochastic processes and operator calculus on quantum groups. Topics which are treated include operator calculus, dual representations, stochastic processes and diffusions, Appell polynomials and systems in connection with evolution equations. Audience: This volume contains introductory material for graduate students who are new to the field, as well as more advanced material for specialists in probability theory, algebraic structures, representation theory, mathematical physics and theoretical physics.
Author | : Gregory Budzban |
Publisher | : American Mathematical Soc. |
Total Pages | : 250 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0821820273 |
This volume presents results from an AMS Special Session held on the topic in Gainesville (FL). Papers included are written by an international group of well-known specialists who offer an important cross-section of current work in the field. In addition there are two expository papers that provide an avenue for non-specialists to comprehend problems in this area. The breadth of research in this area is evident by the variety of articles presented in the volume. Results concern probability on Lie groups and general locally compact groups. Generalizations of groups appear as hypergroups, abstract semigroups, and semigroups of matrices. Work on symmetric cones is included. Lastly, there are a number of articles on the current progress in constructing stochastic processes on quantum groups.
Author | : Uwe Franz |
Publisher | : Cambridge University Press |
Total Pages | : 200 |
Release | : 2016-01-07 |
Genre | : Mathematics |
ISBN | : 1316674045 |
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physics and operator algebras.
Author | : Ole E Barndorff-Nielsen |
Publisher | : Springer |
Total Pages | : 351 |
Release | : 2005-11-24 |
Genre | : Mathematics |
ISBN | : 3540323856 |
This is the second of two volumes containing the revised and completed notes of lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present second volume contains the following lectures: "Random Walks on Finite Quantum Groups" by Uwe Franz and Rolf Gohm, "Quantum Markov Processes and Applications in Physics" by Burkhard Kümmerer, Classical and Free Infinite Divisibility and Lévy Processes" by Ole E. Barndorff-Nielsen, Steen Thorbjornsen, and "Lévy Processes on Quantum Groups and Dual Groups" by Uwe Franz.
Author | : Vladimir K Dobrev |
Publisher | : World Scientific |
Total Pages | : 330 |
Release | : 2000-09-29 |
Genre | : |
ISBN | : 9814542768 |
This book is a comprehensive treatise on the theory and applications of moment functions in image analysis. Moment functions are widely used in various realms of computer vision and image processing. Numerous algorithms and techniques have been developed using image moments, in the areas of pattern recognition, object identification, three-dimensional object pose estimation, robot sensing, image coding and reconstruction. This book provides a compilation of the theoretical aspects related to different types of moment functions, and their applications in the above areas.The book is organized into two parts. The first part discusses the fundamental concepts behind important moments such as geometric moments, complex moments, Legendre moments, Zernike moments, and moment tensors. Most of the commonly used properties of moment functions and the mathematical framework for the derivation of basic theorems and results are discussed in detail. This includes the derivation of moment invariants, implementation aspects of moments, transform properties, and fast methods for computing the moment functions for both binary and gray-level images. The second part presents the key application areas of moments such as pattern recognition, object identification, image-based pose estimation, edge detection, clustering, segmentation, coding and reconstruction. Important algorithms in each of these areas are discussed. A comprehensive list of bibliographical references on image moments is also included.
Author | : Hui-Hsiung Kuo |
Publisher | : American Mathematical Soc. |
Total Pages | : 242 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 0821832026 |
This book contains the proceedings of the special session in honor of Leonard Gross held at the annual Joint Mathematics Meetings in New Orleans (LA). The speakers were specialists in a variety of fields, and many were Professor Gross's former Ph.D. students and their descendants. Papers in this volume present results from several areas of mathematics. They illustrate applications of powerful ideas that originated in Gross's work and permeate diverse fields. Topics include stochastic partial differential equations, white noise analysis, Brownian motion, Segal-Bargmann analysis, heat kernels, and some applications. The volume should be useful to graduate students and researchers. It provides perspective on current activity and on central ideas and techniques in the topics covered.
Author | : Sergio Albeverio |
Publisher | : World Scientific |
Total Pages | : 476 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9789812702241 |
This volume contains 27 refereed research articles and survey papers written by experts in the field of stochastic analysis and related topics. Most contributors are well known leading mathematicians worldwide and prominent young scientists. The volume reflects a review of the recent developments in stochastic analysis and related topics. It puts in evidence the strong interconnection of stochastic analysis with other areas of mathematics, as well as with applications of mathematics in natural and social economic sciences. The volume also provides some possible future directions for the field. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
Author | : Marcelo Aguiar |
Publisher | : Cambridge University Press |
Total Pages | : 853 |
Release | : 2020-03-19 |
Genre | : Mathematics |
ISBN | : 110849580X |
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel-Hopf, Poincar -Birkhoff-Witt, and Cartier-Milnor-Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.
Author | : Uwe Franz |
Publisher | : World Scientific |
Total Pages | : 547 |
Release | : 2005-01-12 |
Genre | : Mathematics |
ISBN | : 9814481025 |
This volume collects research papers in quantum probability and related fields and reflects the recent developments in quantum probability ranging from the foundations to its applications.
Author | : J. A. van Casteren |
Publisher | : World Scientific |
Total Pages | : 825 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 9814322180 |
The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.