Seminar on Stochastic Analysis, Random Fields and Applications IV

Seminar on Stochastic Analysis, Random Fields and Applications IV
Author: Robert Dalang
Publisher: Birkhäuser
Total Pages: 329
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034879431

This volume contains twenty refereed papers presented at the 4th Seminar on Stochastic Processes, Random Fields and Applications, which took place in Ascona, Switzerland, from May 2002. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance and insurance.

Handbooks in Operations Research and Management Science: Financial Engineering

Handbooks in Operations Research and Management Science: Financial Engineering
Author: John R. Birge
Publisher: Elsevier
Total Pages: 1026
Release: 2007-11-16
Genre: Business & Economics
ISBN: 9780080553252

The remarkable growth of financial markets over the past decades has been accompanied by an equally remarkable explosion in financial engineering, the interdisciplinary field focusing on applications of mathematical and statistical modeling and computational technology to problems in the financial services industry. The goals of financial engineering research are to develop empirically realistic stochastic models describing dynamics of financial risk variables, such as asset prices, foreign exchange rates, and interest rates, and to develop analytical, computational and statistical methods and tools to implement the models and employ them to design and evaluate financial products and processes to manage risk and to meet financial goals. This handbook describes the latest developments in this rapidly evolving field in the areas of modeling and pricing financial derivatives, building models of interest rates and credit risk, pricing and hedging in incomplete markets, risk management, and portfolio optimization. Leading researchers in each of these areas provide their perspective on the state of the art in terms of analysis, computation, and practical relevance. The authors describe essential results to date, fundamental methods and tools, as well as new views of the existing literature, opportunities, and challenges for future research.

Optimal Portfolios

Optimal Portfolios
Author: Ralf Korn
Publisher: World Scientific
Total Pages: 352
Release: 1997
Genre: Business & Economics
ISBN: 9812385347

The focus of the book is the construction of optimal investment strategies in a security market model where the prices follow diffusion processes. It begins by presenting the complete Black-Scholes type model and then moves on to incomplete models and models including constraints and transaction costs. The models and methods presented will include the stochastic control method of Merton, the martingale method of Cox-Huang and Karatzas et al., the log optimal method of Cover and Jamshidian, the value-preserving model of Hellwig etc.

Convex and Stochastic Optimization

Convex and Stochastic Optimization
Author: J. Frédéric Bonnans
Publisher: Springer
Total Pages: 320
Release: 2019-04-24
Genre: Mathematics
ISBN: 3030149773

This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.

Convex Duality in Constrained Mean-variance Portfolio Optimization Under a Regime-switching Model

Convex Duality in Constrained Mean-variance Portfolio Optimization Under a Regime-switching Model
Author: Catherine Donnelly
Publisher:
Total Pages: 203
Release: 2008
Genre:
ISBN:

In this thesis, we solve a mean-variance portfolio optimization problem with portfolio constraints under a regime-switching model. Specifically, we seek a portfolio process which minimizes the variance of the terminal wealth, subject to a terminal wealth constraint and convex portfolio constraints. The regime-switching is modeled using a finite state space, continuous-time Markov chain and the market parameters are allowed to be random processes. The solution to this problem is of interest to investors in financial markets, such as pension funds, insurance companies and individuals. We establish the existence and characterization of the solution to the given problem using a convex duality method. We encode the constraints on the given problem as static penalty functions in order to derive the primal problem. Next, we synthesize the dual problem from the primal problem using convex conjugate functions. We show that the solution to the dual problem exists. From the construction of the dual problem, we find a set of necessary and sufficient conditions for the primal and dual problems to each have a solution. Using these conditions, we can show the existence of the solution to the given problem and characterize it in terms of the market parameters and the solution to the dual problem. The results of the thesis lay the foundation to find an actual solution to the given problem, by looking at specific examples. If we can find the solution to the dual problem for a specific example, then, using the characterization of the solution to the given problem, we may be able to find the actual solution to the specific example. In order to use the convex duality method, we have to prove a martingale representation theorem for processes which are locally square-integrable martingales with respect to the filtration generated by a Brownian motion and a finite state space, continuous-time Markov chain. This result may be of interest in problems involving regime-switching models which require a martingale representation theorem.

Probabilistic Models for Nonlinear Partial Differential Equations

Probabilistic Models for Nonlinear Partial Differential Equations
Author: Denis Talay
Publisher: Springer
Total Pages: 312
Release: 2006-11-13
Genre: Mathematics
ISBN: 3540685138

The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.

Stochastic Controls

Stochastic Controls
Author: Jiongmin Yong
Publisher: Springer Science & Business Media
Total Pages: 459
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461214661

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Convex Optimization

Convex Optimization
Author: Stephen P. Boyd
Publisher: Cambridge University Press
Total Pages: 744
Release: 2004-03-08
Genre: Business & Economics
ISBN: 9780521833783

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.