Discreteness and Continuity in Problems of Chaotic Dynamics

Discreteness and Continuity in Problems of Chaotic Dynamics
Author: Michael L. Blank
Publisher: American Mathematical Soc.
Total Pages: 184
Release: 1997-01-01
Genre: Mathematics
ISBN: 9780821897751

This book presents the study of ergodic properties of so-called chaotic dynamical systems. One of the central topics is the interplay between deterministic and quasi-stochastic behaviour in chaotic dynamics and between properties of continuous dynamical systems and those of their discrete approximations. Using simple examples, the author describes the main phenomena known in chaotic dynamical systems, studying topics such as the operator approach in chaotic dynamics, stochastic stability, and the so-called coupled systems. The last two chapters are devoted to problems of numerical modeling of chaotic dynamics.

Proceedings

Proceedings
Author:
Publisher:
Total Pages: 794
Release: 2000
Genre: Engineering
ISBN:

"Proceedings A publishes refereed research papers in the mathematical, physical, and engineering sciences. The emphasis is on new, emerging areas of interdisciplinary and multidisciplinary research." Continues: Proceedings. Mathematical and physical sciences.

Data-Driven Identification of Networks of Dynamic Systems

Data-Driven Identification of Networks of Dynamic Systems
Author: Michel Verhaegen
Publisher: Cambridge University Press
Total Pages: 287
Release: 2022-05-12
Genre: Technology & Engineering
ISBN: 1316515702

A comprehensive introduction to identifying network-connected systems, covering models and methods, and applications in adaptive optics.

Extremes and Recurrence in Dynamical Systems

Extremes and Recurrence in Dynamical Systems
Author: Valerio Lucarini
Publisher: John Wiley & Sons
Total Pages: 325
Release: 2016-04-25
Genre: Mathematics
ISBN: 1118632192

Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.

Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems

Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems
Author: Jiri Nedoma
Publisher: John Wiley & Sons
Total Pages: 458
Release: 2011-06-09
Genre: Science
ISBN: 1118006461

Cutting-edge solutions to current problems in orthopedics, supported by modeling and numerical analysis Despite the current successful methods and achievements of good joint implantations, it is essential to further optimize the shape of implants so they may better resist extreme long-term mechanical demands. This book provides the orthopedic, biomechanical, and mathematical basis for the simulation of surgical techniques in orthopedics. It focuses on the numerical modeling of total human joint replacements and simulation of their functions, along with the rigorous biomechanics of human joints and other skeletal parts. The book includes: An introduction to the anatomy and biomechanics of the human skeleton, biomaterials, and problems of alloarthroplasty The definition of selected simulated orthopedic problems Constructions of mathematical model problems of the biomechanics of the human skeleton and its parts Replacement parts of the human skeleton and corresponding mathematical model problems Detailed mathematical analyses of mathematical models based on functional analysis and finite element methods Biomechanical analyses of particular parts of the human skeleton, joints, and corresponding replacements A discussion of the problems of data processing from nuclear magnetic resonance imaging and computer tomography This timely book offers a wealth of information on the current research in this field. The theories presented are applied to specific problems of orthopedics. Numerical results are presented and discussed from both biomechanical and orthopedic points of view and treatment methods are also briefly addressed. Emphasis is placed on the variational approach to the investigated model problems while preserving the orthopedic nature of the investigated problems. The book also presents a study of algorithmic procedures based on these simulation models. This is a highly useful tool for designers, researchers, and manufacturers of joint implants who require the results of suggested experiments to improve existing shapes or to design new shapes. It also benefits graduate students in orthopedics, biomechanics, and applied mathematics.

One-Dimensional Dynamics

One-Dimensional Dynamics
Author: Welington de Melo
Publisher: Springer Science & Business Media
Total Pages: 616
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642780431

One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Boltzmann's Legacy

Boltzmann's Legacy
Author: Jakob Yngvason
Publisher: European Mathematical Society
Total Pages: 288
Release: 2008
Genre: Biography & Autobiography
ISBN: 9783037190579

Ludwig Eduard Boltzmann (1844-1906) was an Austrian physicist famous for his founding contributions in the fields of statistical mechanics and statistical thermodynamics. He was one of the most important advocates for atomic theory when that scientific model was still highly controversial. To commemorate the 100th anniversary of his death in Duino, the International Symposium ``Boltzmann's Legacy'' was held at the Erwin Schrodinger International Institute for Mathematical Physics in June 2006. This text covers a broad spectrum of topics ranging from equilibrium statistical and nonequilibrium statistical physics, ergodic theory and chaos to basic questions of biology and historical accounts of Boltzmann's work. Besides the lectures presented at the symposium the volume also contains contributions specially written for this occasion. The articles give a broad overview of Boltzmann's legacy to the sciences from the standpoint of some of today's leading scholars in the field. The book addresses students and researchers in mathematics, physics, and the history of science.