Statistical Multiple Integration

Statistical Multiple Integration
Author: Nancy Flournoy
Publisher: American Mathematical Soc.
Total Pages: 290
Release: 1991
Genre: Mathematics
ISBN: 0821851225

High dimensional integration arises naturally in two major sub-fields of statistics: multivariate and Bayesian statistics. Indeed, the most common measures of central tendency, variation, and loss are defined by integrals over the sample space, the parameter space, or both. Recent advances in computational power have stimulated significant new advances in both Bayesian and classical multivariate statistics. In many statistical problems, however, multiple integration can be the major obstacle to solutions. This volume contains the proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Statistical Multiple Integration, held in June 1989 at Humboldt State University in Arcata, California. The conference represents an attempt to bring together mathematicians, statisticians, and computational scientists to focus on the many important problems in statistical multiple integration. The papers document the state of the art in this area with respect to problems in statistics, potential advances blocked by problems with multiple integration, and current work directed at expanding the capability to integrate over high dimensional surfaces.

Approximating Integrals via Monte Carlo and Deterministic Methods

Approximating Integrals via Monte Carlo and Deterministic Methods
Author: Michael Evans
Publisher: OUP Oxford
Total Pages: 302
Release: 2000-03-23
Genre: Mathematics
ISBN: 019158987X

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals the lower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primary Markov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475734379

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R
Author: Christian Robert
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2010
Genre: Computers
ISBN: 1441915753

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling
Author: Ding-Geng (Din) Chen
Publisher: Springer
Total Pages: 440
Release: 2017-02-01
Genre: Medical
ISBN: 9811033072

This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Uncertainty in Engineering

Uncertainty in Engineering
Author: Louis J. M. Aslett
Publisher: Springer Nature
Total Pages: 148
Release: 2022
Genre:
ISBN: 3030836401

This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.

Monte Carlo Statistical Methods

Monte Carlo Statistical Methods
Author: Christian Robert
Publisher: Springer Science & Business Media
Total Pages: 670
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475741456

We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition
Author: Marco Taboga
Publisher: Createspace Independent Publishing Platform
Total Pages: 670
Release: 2017-12-08
Genre: Mathematical statistics
ISBN: 9781981369195

The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Monte Carlo and Quasi-Monte Carlo Methods

Monte Carlo and Quasi-Monte Carlo Methods
Author: Ronald Cools
Publisher: Springer
Total Pages: 624
Release: 2016-06-13
Genre: Mathematics
ISBN: 3319335073

This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

Monte Carlo Strategies in Scientific Computing

Monte Carlo Strategies in Scientific Computing
Author: Jun S. Liu
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2013-11-11
Genre: Mathematics
ISBN: 0387763716

This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.