An Introduction to Statistical Mechanics and Thermodynamics

An Introduction to Statistical Mechanics and Thermodynamics
Author: Robert H. Swendsen
Publisher: Oxford University Press
Total Pages: 422
Release: 2012-03
Genre: Mathematics
ISBN: 0199646945

This text presents statistical mechanics and thermodynamics as a theoretically integrated field of study. It stresses deep coverage of fundamentals, providing a natural foundation for advanced topics. The large problem sets (with solutions for teachers) include many computational problems to advance student understanding.

Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems

Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
Author: Werner Ebeling
Publisher: World Scientific
Total Pages: 344
Release: 2005
Genre: Science
ISBN: 9810213824

This book presents both the fundamentals and the major research topics in statistical physics of systems out of equilibrium. It summarizes different approaches to describe such systems on the thermodynamic and stochastic levels, and discusses a variety of areas including reactions, anomalous kinetics, and the behavior of self-propelling particles.

Statistical Thermodynamics and Stochastic Kinetics

Statistical Thermodynamics and Stochastic Kinetics
Author: Yiannis N. Kaznessis
Publisher: Cambridge University Press
Total Pages: 329
Release: 2012
Genre: Mathematics
ISBN: 0521765617

Provides engineers with the knowledge they need to apply thermodynamics and solve engineering challenges at the molecular level.

Stochastic Thermodynamics

Stochastic Thermodynamics
Author: Luca Peliti
Publisher: Princeton University Press
Total Pages: 272
Release: 2021-07-06
Genre: Mathematics
ISBN: 0691201773

The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course

Statistical Mechanics and Stochastic Thermodynamics

Statistical Mechanics and Stochastic Thermodynamics
Author: David T. Limmer
Publisher: Oxford University Press
Total Pages: 400
Release: 2024-08-01
Genre: Science
ISBN: 0198919867

The theory of statistical mechanics is the best link we have between the imperceptible world of atoms and molecules and our common macroscopic experience. This textbook provides the fundamental rules and relationships of statistical mechanics. Through it, students will learn how to deduce the properties of materials from an underlying understanding of the behaviour of its constituent building blocks. The textbook covers the basics of systems at rest, as well as those directly manipulated. The former, also known as equilibrium statistical mechanics, is reviewed in the context of recent results in probability theory, with emphasis on solvation phenomena and phase transitions. The latter, nonequilibrium statistical mechanics, has seen tremendous advancement in the last few years, and is integrated into a textbook for the first time. These latter chapters emphasize rates of rare events like chemical reactions as well as single molecule experiments. Throughout the book, distinctions between heat and work, as well as notions of trajectory ensembles reflect the incorporation of stochastic thermodynamics into the modern language of statistical mechanics. Ideas of scaling, the concentration of measures, and generalized theories of ensemble equivalence represent the important contribution of the mathematics of large deviations.

Quantum Stochastic Thermodynamics

Quantum Stochastic Thermodynamics
Author: Philipp Strasberg
Publisher: Oxford University Press
Total Pages: 337
Release: 2022
Genre: Science
ISBN: 0192895583

The theory of thermodynamics has been one of the bedrocks of 19th-century physics, and thermodynamic problems have inspired Planck's quantum hypothesis. One hundred years later, in an era where we design increasingly sophisticated nanotechnologies, researchers in quantum physics have been 'returning to their roots', attempting to reconcile modern nanoscale devices with the theory of thermodynamics. This textbook explains how it is possible to unify the two opposite pictures of microscopic quantum physics and macroscopic thermodynamics in one consistent framework, proving that the ancient theory of thermodynamics still offers many remarkable insights into present-day problems. This textbook focuses on the microscopic derivation and understanding of key principles and concepts and their interrelation. The topics covered in this book include (quantum) stochastic processes, (quantum) master equations, local detailed balance, classical stochastic thermodynamics, (quantum) fluctuation theorems, strong coupling and non-Markovian effects, thermodynamic uncertainty relations, operational approaches, Maxwell's demon, and time-reversal symmetry, among other topics. The textbook also explores several practical applications of the theory in more detail, including single-molecule pulling experiments, quantum transport and thermoelectric effects in quantum dots, the micromaser, and related setups in quantum optics. The aim of this book is to inspire readers to investigate a plethora of modern nanoscale devices from a thermodynamic point of view, allowing them to address their dissipation, efficiency, reliability, and power based on a conceptually clear understanding about the microscopic origin of heat, entropy, and the second law. The book is accessible to graduate students, post-docs, and lecturers, but will also be of interest to all researchers striving for a deeper understanding of the laws of thermodynamics beyond their traditional realm of applicability.

Non-equilibrium Thermodynamics and Statistical Mechanics

Non-equilibrium Thermodynamics and Statistical Mechanics
Author: Phil Attard
Publisher: OUP Oxford
Total Pages: 480
Release: 2012-10-04
Genre: Science
ISBN: 019163977X

`Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications' builds from basic principles to advanced techniques, and covers the major phenomena, methods, and results of time-dependent systems. It is a pedagogic introduction, a comprehensive reference manual, and an original research monograph. Uniquely, the book treats time-dependent systems by close analogy with their static counterparts, with most of the familiar results of equilibrium thermodynamics and statistical mechanics being generalized and applied to the non-equilibrium case. The book is notable for its unified treatment of thermodynamics, hydrodynamics, stochastic processes, and statistical mechanics, for its self-contained, coherent derivation of a variety of non-equilibrium theorems, and for its quantitative tests against experimental measurements and computer simulations. Systems that evolve in time are more common than static systems, and yet until recently they lacked any over-arching theory. 'Non-equilibrium Thermodynamics and Statistical Mechanics' is unique in its unified presentation of the theory of non-equilibrium systems, which has now reached the stage of quantitative experimental and computational verification. The novel perspective and deep understanding that this book brings offers the opportunity for new direction and growth in the study of time-dependent phenomena. 'Non-equilibrium Thermodynamics and Statistical Mechanics' is an invaluable reference manual for experts already working in the field. Research scientists from different disciplines will find the overview of time-dependent systems stimulating and thought-provoking. Lecturers in physics and chemistry will be excited by many fresh ideas and topics, insightful explanations, and new approaches. Graduate students will benefit from its lucid reasoning and its coherent approach, as well as from the chem12physof mathematical techniques, derivations, and computer algorithms.

Statistical Mechanics for Athermal Fluctuation

Statistical Mechanics for Athermal Fluctuation
Author: Kiyoshi Kanazawa
Publisher: Springer
Total Pages: 231
Release: 2017-11-20
Genre: Science
ISBN: 981106332X

The author investigates athermal fluctuation from the viewpoints of statistical mechanics in this thesis. Stochastic methods are theoretically very powerful in describing fluctuation of thermodynamic quantities in small systems on the level of a single trajectory and have been recently developed on the basis of stochastic thermodynamics. This thesis proposes, for the first time, a systematic framework to describe athermal fluctuation, developing stochastic thermodynamics for non-Gaussian processes, while thermal fluctuations are mainly addressed from the viewpoint of Gaussian stochastic processes in most of the conventional studies. First, the book provides an elementary introduction to the stochastic processes and stochastic thermodynamics. The author derives a Langevin-like equation with non-Gaussian noise as a minimal stochastic model for athermal systems, and its analytical solution by developing systematic expansions is shown as the main result. Furthermore, the a uthor shows a thermodynamic framework for such non-Gaussian fluctuations, and studies some thermodynamics phenomena, i.e. heat conduction and energy pumping, which shows distinct characteristics from conventional thermodynamics. The theory introduced in the book would be a systematic foundation to describe dynamics of athermal fluctuation quantitatively and to analyze their thermodynamic properties on the basis of stochastic methods.

Statistical Mechanics, Kinetic theory, and Stochastic Processes

Statistical Mechanics, Kinetic theory, and Stochastic Processes
Author: C.V. Heer
Publisher: Elsevier
Total Pages: 619
Release: 2012-12-02
Genre: Science
ISBN: 0323144411

Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.