Statistical Engineering
Download Statistical Engineering full books in PDF, epub, and Kindle. Read online free Statistical Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stefan H. Steiner |
Publisher | : Quality Press |
Total Pages | : 717 |
Release | : 2005-01-02 |
Genre | : Business & Economics |
ISBN | : 0873891368 |
Reducing the variation in process outputs is a key part of process improvement. For mass produced components and assemblies, reducing variation can simultaneously reduce overall cost, improve function and increase customer satisfaction with the product. The authors have structured this book around an algorithm for reducing process variation that they call "Statistical Engineering." The algorithm is designed to solve chronic problems on existing high to medium volume manufacturing and assembly processes. The fundamental basis for the algorithm is the belief that we will discover cost effective changes to the process that will reduce variation if we increase our knowledge of how and why a process behaves as it does. A key way to increase process knowledge is to learn empirically, that is, to learn by observation and experimentation. The authors discuss in detail a framework for planning and analyzing empirical investigations, known by its acronym QPDAC (Question, Plan, Data, Analysis, Conclusion). They classify all effective ways to reduce variation into seven approaches. A unique aspect of the algorithm forces early consideration of the feasibility of each of the approaches. Also includes case studies, chapter exercises, chapter supplements, and six appendices. PRAISE FOR Statistical Engineering "I found this book uniquely refreshing. Don't let the title fool you. The methods described in this book are statistically sound but require very little statistics. If you have ever wanted to solve a problem with statistical certainty (without being a statistician) then this book is for you. - A reader in Dayton, OH "This is the most comprehensive treatment of variation reduction methods and insights I’ve ever seen."- Gary M. Hazard Tellabs "Throughout the text emphasis has been placed on teamwork, fixing the obvious before jumping to advanced studies, and cost of implementation. All this makes the manuscript !attractive for real-life application of complex techniques." - Guru Chadhabr Comcast IP Services COMMENTS FROM OTHER CUSTOMERS Average Customer Rating (5 of 5 based on 1 review) "This is NOT a typical book on statistical tools. It is a strategy book on how to search for cost-effective changes to reduce variation using empirical means (i.e. observation and experiment). The uniqueness of this book: Summarizes the seven ways to reduce variation so we know the goal of the data gathering and analysis, present analysis results using graphs instead of P-value, and integrates Taguchi, Shainin methods, and classical statistical approach. It is a must read for those who are in the business of reducing variation using data, in particular for the Six Sigma Black Belts and Master Black Belts. Don't forget to read the solutions to exercises and supplementary materials to each chapter on the enclosed CD-ROM." - A. Wong, Canada
Author | : Hoang Pham |
Publisher | : Springer Nature |
Total Pages | : 497 |
Release | : 2021-08-13 |
Genre | : Technology & Engineering |
ISBN | : 3030769046 |
This book presents the state-of-the-art methodology and detailed analytical models and methods used to assess the reliability of complex systems and related applications in statistical reliability engineering. It is a textbook based mainly on the author’s recent research and publications as well as experience of over 30 years in this field. The book covers a wide range of methods and models in reliability, and their applications, including: statistical methods and model selection for machine learning; models for maintenance and software reliability; statistical reliability estimation of complex systems; and statistical reliability analysis of k out of n systems, standby systems and repairable systems. Offering numerous examples and solved problems within each chapter, this comprehensive text provides an introduction to reliability engineering graduate students, a reference for data scientists and reliability engineers, and a thorough guide for researchers and instructors in the field.
Author | : John W. Daily |
Publisher | : Cambridge University Press |
Total Pages | : 285 |
Release | : 2018-12-20 |
Genre | : Mathematics |
ISBN | : 1108415318 |
Clearly connects macroscopic and microscopic thermodynamics and explains non-equilibrium behavior in kinetic theory and chemical kinetics.
Author | : Wei Zhan |
Publisher | : Momentum Press |
Total Pages | : 247 |
Release | : 2015-11-16 |
Genre | : Technology & Engineering |
ISBN | : 1606504932 |
The book focuses on the introduction of the basic concepts, processes, and tools used in Lean Six Sigma. A unique feature is the detailed discussion on Design for Six Sigma aided by computer modeling and simulation. The authors present several sample projects in which Lean Six Sigma and Design for Six Sigma were used to solve engineering problems or improve processes based on their own research and development experiences in engineering design and analysis. This book is intended to be a textbook for advanced undergraduate students, graduate students in engineering, and mid-career engineering professionals. It can also be a reference book, or be used to prepare for the Six Sigma Green Belt and Black Belt certifications by organizations such as American Society for Quality.
Author | : Jim Morrison |
Publisher | : John Wiley & Sons |
Total Pages | : 192 |
Release | : 2009-06-15 |
Genre | : Mathematics |
ISBN | : 9780470746431 |
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
Author | : Hartmut Schiefer |
Publisher | : Springer Nature |
Total Pages | : 139 |
Release | : 2021-04-16 |
Genre | : Mathematics |
ISBN | : 3658323973 |
This book describes how statistical methods can be effectively applied in the work of an engineer in terms that can be readily understood. Application of these methods enables the effort involved in experiments to be reduced, the results of these experiments to be fully evaluated, and statistically sound statements to be made as a result. Products can be developed more efficiently and manufactured more cost-effectively, not to mention with greater process reliability. The overarching aim is to save time, money, and materials. From the examples provided, the nature of the practical application can be clearly grasped in each case. This book is a translation of the original German 1st edition Statistik für Ingenieure by Hartmut Schiefer and Felix Schiefer, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2018. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). The present version has been revised technically and linguistically by the authors in collaboration with a professional translator. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Author | : Theodore T. Allen |
Publisher | : Springer Science & Business Media |
Total Pages | : 573 |
Release | : 2010-04-23 |
Genre | : Technology & Engineering |
ISBN | : 1849960003 |
Lean production, has long been regarded as critical to business success in many industries. Over the last ten years, instruction in six sigma has been increasingly linked with learning about the elements of lean production. Introduction to Engineering Statistics and Lean Sigma builds on the success of its first edition (Introduction to Engineering Statistics and Six Sigma) to reflect the growing importance of the "lean sigma" hybrid. As well as providing detailed definitions and case studies of all six sigma methods, Introduction to Engineering Statistics and Lean Sigma forms one of few sources on the relationship between operations research techniques and lean sigma. Readers will be given the information necessary to determine which sigma methods to apply in which situation, and to predict why and when a particular method may not be effective. Methods covered include: • control charts and advanced control charts, • failure mode and effects analysis, • Taguchi methods, • gauge R&R, and • genetic algorithms. The second edition also greatly expands the discussion of Design For Six Sigma (DFSS), which is critical for many organizations that seek to deliver desirable products that work first time. It incorporates recently emerging formulations of DFSS from industry leaders and offers more introductory material on the design of experiments, and on two level and full factorial experiments, to help improve student intuition-building and retention. The emphasis on lean production, combined with recent methods relating to Design for Six Sigma (DFSS), makes Introduction to Engineering Statistics and Lean Sigma a practical, up-to-date resource for advanced students, educators, and practitioners.
Author | : Nozer D. Singpurwalla |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 1999-08-05 |
Genre | : Computers |
ISBN | : 0387988238 |
In establishing a framework for dealing with uncertainties in software engineering, and for using quantitative measures in related decision-making, this text puts into perspective the large body of work having statistical content that is relevant to software engineering. Aimed at computer scientists, software engineers, and reliability analysts who have some exposure to probability and statistics, the content is pitched at a level appropriate for research workers in software reliability, and for graduate level courses in applied statistics computer science, operations research, and software engineering.
Author | : Charles Lipson |
Publisher | : McGraw-Hill Companies |
Total Pages | : 546 |
Release | : 1973 |
Genre | : Science |
ISBN | : |
Author | : Gerald J. Hahn |
Publisher | : Wiley-Interscience |
Total Pages | : 0 |
Release | : 1994-03-31 |
Genre | : Mathematics |
ISBN | : 9780471040651 |
A detailed treatment on the use of statistical models representing physical phenomena. Considers the relevance of the popular normal distribution models and the applicability of exponential distribution in reliability problems. Introduces and discusses the use of alternate models such as gamma, beta and Weibull distributions. Features expansive coverage of system performance and describes an exact method known as the transformation of variables. Deals with techniques on assessing the adequacy of a chosen model including both graphical and analytical procedures. Contains scores of illustrative examples, most of which have been adapted from actual problems.