Statistical Applications For Environmental Analysis And Risk Assessment
Download Statistical Applications For Environmental Analysis And Risk Assessment full books in PDF, epub, and Kindle. Read online free Statistical Applications For Environmental Analysis And Risk Assessment ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Joseph Ofungwu |
Publisher | : John Wiley & Sons |
Total Pages | : 656 |
Release | : 2014-05-06 |
Genre | : Social Science |
ISBN | : 1118634519 |
Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.
Author | : Colin Aitken |
Publisher | : John Wiley & Sons |
Total Pages | : 1251 |
Release | : 2020-12-29 |
Genre | : Mathematics |
ISBN | : 1119245222 |
Statistics and the Evaluation of Evidence for Forensic Scientists The leading resource in the statistical evaluation and interpretation of forensic evidence The third edition of Statistics and the Evaluation of Evidence for Forensic Scientists is fully updated to provide the latest research and developments in the use of statistical techniques to evaluate and interpret evidence. Courts are increasingly aware of the importance of proper evidence assessment when there is an element of uncertainty. Because of the increasing availability of data, the role of statistical and probabilistic reasoning is gaining a higher profile in criminal cases. That’s why lawyers, forensic scientists, graduate students, and researchers will find this book an essential resource, one which explores how forensic evidence can be evaluated and interpreted statistically. It’s written as an accessible source of information for all those with an interest in the evaluation and interpretation of forensic scientific evidence. Discusses the entire chain of reasoning–from evidence pre-assessment to court presentation; Includes material for the understanding of evidence interpretation for single and multiple trace evidence; Provides real examples and data for improved understanding. Since the first edition of this book was published in 1995, this respected series has remained a leading resource in the statistical evaluation of forensic evidence. It shares knowledge from authors in the fields of statistics and forensic science who are international experts in the area of evidence evaluation and interpretation. This book helps people to deal with uncertainty related to scientific evidence and propositions. It introduces a method of reasoning that shows how to update beliefs coherently and to act rationally. In this edition, readers can find new information on the topics of elicitation, subjective probabilities, decision analysis, and cognitive bias, all discussed in a Bayesian framework.
Author | : Xiao-Hua Zhou |
Publisher | : John Wiley & Sons |
Total Pages | : 260 |
Release | : 2014-05-19 |
Genre | : Medical |
ISBN | : 1118573641 |
Applied Missing Data Analysis in the Health Sciences A modern and practical guide to the essential concepts and ideas for analyzing data with missing observations in the field of biostatistics With an emphasis on hands-on applications, Applied Missing Data Analysis in the Health Sciences outlines the various statistical methods for the analysis of missing data. The authors acknowledge the limitations of established techniques and provide newly-developed methods with concrete applications in areas such as causal inference. Organized by types of data, chapter coverage begins with an overall introduction to the existence and limitations of missing data and continues into techniques for missing data inference, including likelihood-based, weighted GEE, multiple imputation, and Bayesian methods. The book subsequently covers cross-sectional, longitudinal, hierarchical, survival data. In addition, Applied Missing Data Analysis in the Health Sciences features: Multiple data sets that can be replicated using SAS®, Stata®, R, and WinBUGS software packages Numerous examples of case studies to illustrate real-world scenarios and demonstrate applications of discussed methodologies Detailed appendices to guide readers through the use of the presented data in various software environments Applied Missing Data Analysis in the Health Sciences is an excellent textbook for upper-undergraduate and graduate-level biostatistics courses as well as an ideal resource for health science researchers and applied statisticians.
Author | : Sofia Dias |
Publisher | : John Wiley & Sons |
Total Pages | : 484 |
Release | : 2018-03-19 |
Genre | : Mathematics |
ISBN | : 1118647505 |
A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.
Author | : Richard D. Riley |
Publisher | : John Wiley & Sons |
Total Pages | : 38 |
Release | : 2021-06-08 |
Genre | : Medical |
ISBN | : 1119333725 |
Individual Participant Data Meta-Analysis: A Handbook for Healthcare Research provides a comprehensive introduction to the fundamental principles and methods that healthcare researchers need when considering, conducting or using individual participant data (IPD) meta-analysis projects. Written and edited by researchers with substantial experience in the field, the book details key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside illustrated examples and summary learning points. Split into five parts, the book chapters take the reader through the journey from initiating and planning IPD projects to obtaining, checking, and meta-analysing IPD, and appraising and reporting findings. The book initially focuses on the synthesis of IPD from randomised trials to evaluate treatment effects, including the evaluation of participant-level effect modifiers (treatment-covariate interactions). Detailed extension is then made to specialist topics such as diagnostic test accuracy, prognostic factors, risk prediction models, and advanced statistical topics such as multivariate and network meta-analysis, power calculations, and missing data. Intended for a broad audience, the book will enable the reader to: Understand the advantages of the IPD approach and decide when it is needed over a conventional systematic review Recognise the scope, resources and challenges of IPD meta-analysis projects Appreciate the importance of a multi-disciplinary project team and close collaboration with the original study investigators Understand how to obtain, check, manage and harmonise IPD from multiple studies Examine risk of bias (quality) of IPD and minimise potential biases throughout the project Understand fundamental statistical methods for IPD meta-analysis, including two-stage and one-stage approaches (and their differences), and statistical software to implement them Clearly report and disseminate IPD meta-analyses to inform policy, practice and future research Critically appraise existing IPD meta-analysis projects Address specialist topics such as effect modification, multiple correlated outcomes, multiple treatment comparisons, non-linear relationships, test accuracy at multiple thresholds, multiple imputation, and developing and validating clinical prediction models Detailed examples and case studies are provided throughout.
Author | : Kung-Jong Lui |
Publisher | : John Wiley & Sons |
Total Pages | : 248 |
Release | : 2016-08-08 |
Genre | : Medical |
ISBN | : 1119114691 |
A comprehensive and practical resource for analyses of crossover designs For ethical reasons, it is vital to keep the number of patients in a clinical trial as low as possible. As evidenced by extensive research publications, crossover design can be a useful and powerful tool to reduce the number of patients needed for a parallel group design in studying treatments for non-curable chronic diseases. This book introduces commonly-used and well-established statistical tests and estimators in epidemiology that can easily be applied to hypothesis testing and estimation of the relative treatment effect for various types of data scale in crossover designs. Models with distribution-free random effects are assumed and hence most approaches considered here are semi-parametric. The book provides clinicians and biostatisticians with the exact test procedures and exact interval estimators, which are applicable even when the number of patients in a crossover trial is small. Systematic discussion on sample size determination is also included, which will be a valuable resource for researchers involved in crossover trial design. Key features: Provides exact test procedures and interval estimators, which are especially of use in small-sample cases. Presents most test procedures and interval estimators in closed-forms, enabling readers to calculate them by use of a pocket calculator or commonly-used statistical packages. Each chapter is self-contained, allowing the book to be used a reference resource. Uses real-life examples to illustrate the practical use of test procedures and estimators Provides extensive exercises to help readers appreciate the underlying theory, learn other relevant test procedures and understand how to calculate the required sample size. Crossover Designs: Testing, Estimation and Sample Size will be a useful resource for researchers from biostatistics, as well as pharmaceutical and clinical sciences. It can also be used as a textbook or reference for graduate students studying clinical experiments.
Author | : Edward A. McBean |
Publisher | : Prentice Hall |
Total Pages | : 346 |
Release | : 1998 |
Genre | : Mathematics |
ISBN | : |
For students and professionals in environmental, civil, and mechanical engineering, few tasks are as challenging as statistical analysis and interpretation. In this book, two leaders in the field address these challenges head-on. They introduce each leading statistical analysis technique, downplaying mathematical notation in favor of sample environmental applications and explanations that make sense to non-statisticians. They also address common problems in data interpretation: small data sets; the need to correlate constituents to infill missing data or identify outliers; creating early warning systems with fewer "false positives," handling noise, and assessing risk. Coverage includes: Characterizing environmental quality data with Normal, Lognormal, and other distributions. Characterizing coincident behavior using regression, correlation and multiple regression. Multiple comparisons using ANOVA and associated parametric analysis techniques. Testing differences between monitoring records when censored data records exist. Focuses on "real-world" situations where data sets may be imperfect. Reflecting decades of experience in the field, the authors also show how to use statistical analysis as the input to realistic risk assessment. In particular, they demonstrate simulation procedures for risk characterization, using sampling methodologies from probability distributions of data. Whether you are concerned with issues of air quality, surface water, groundwater, or soil contamination, the techniques covered in this book will be invaluable.
Author | : Zhihua Zhang |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 334 |
Release | : 2016-11-21 |
Genre | : Mathematics |
ISBN | : 3110424908 |
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains carefully various data analysis procedures and techniques in a clear, concise, and straightforward language and is written in a self-contained way that is accessible to researchers and advanced students in science and engineering. This is an excellent reference for scientists and engineers who wish to analyze, interpret and model data from various sources, and is also an ideal graduate-level textbook for courses in environmental sciences and related fields. Contents: Preface Time series analysis Chaos and dynamical systems Approximation Interpolation Statistical methods Numerical methods Optimization Data envelopment analysis Risk assessments Life cycle assessments Index
Author | : John E. Till |
Publisher | : Oxford University Press |
Total Pages | : 728 |
Release | : 2008-07-10 |
Genre | : Science |
ISBN | : 0190284471 |
Radiological Risk Assessment and Environmental Analysis comprehensively explains methods used for estimating risk to people exposed to radioactive materials released to the environment by nuclear facilities or in an emergency such as a nuclear terrorist event. This is the first book that merges the diverse disciplines necessary for estimating where radioactive materials go in the environment and the risk they present to people. It is not only essential to managers and scientists, but is also a teaching text. The chapters are arranged to guide the reader through the risk assessment process, beginning with the source term (where the radioactive material comes from) and ending with the conversion to risk. In addition to presenting mathematical models used in risk assessment, data is included so the reader can perform the calculations. Each chapter also provides examples and working problems. The book will be a critical component of the rebirth of nuclear energy now taking place, as well as an essential resource to prepare for and respond to a nuclear emergency.
Author | : Richard O. Gilbert |
Publisher | : John Wiley & Sons |
Total Pages | : 354 |
Release | : 1987-02-15 |
Genre | : Technology & Engineering |
ISBN | : 9780471288787 |
This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.