Stability Theorems in Geometry and Analysis

Stability Theorems in Geometry and Analysis
Author: Yu.G. Reshetnyak
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 1994-09-30
Genre: Mathematics
ISBN: 9780792331186

This is one of the first monographs to deal with the metric theory of spatial mappings and incorporates results in the theory of quasi-conformal, quasi-isometric and other mappings. The main subject is the study of the stability problem in Liouville's theorem on conformal mappings in space, which is representative of a number of problems on stability for transformation classes. To enable this investigation a wide range of mathematical tools has been developed which incorporate the calculus of variation, estimates for differential operators like Korn inequalities, properties of functions with bounded mean oscillation, etc. Results obtained by others researching similar topics are mentioned, and a survey is given of publications treating relevant questions or involving the technique proposed. This volume will be of great value to graduate students and researchers interested in geometric function theory.

Stability Theorems in Geometry and Analysis

Stability Theorems in Geometry and Analysis
Author: Yu.G. Reshetnyak
Publisher: Springer Science & Business Media
Total Pages: 406
Release: 2013-04-09
Genre: Mathematics
ISBN: 9401583609

This is one of the first monographs to deal with the metric theory of spatial mappings and incorporates results in the theory of quasi-conformal, quasi-isometric and other mappings. The main subject is the study of the stability problem in Liouville's theorem on conformal mappings in space, which is representative of a number of problems on stability for transformation classes. To enable this investigation a wide range of mathematical tools has been developed which incorporate the calculus of variation, estimates for differential operators like Korn inequalities, properties of functions with bounded mean oscillation, etc. Results obtained by others researching similar topics are mentioned, and a survey is given of publications treating relevant questions or involving the technique proposed. This volume will be of great value to graduate students and researchers interested in geometric function theory.

Geometric Function Theory and Non-linear Analysis

Geometric Function Theory and Non-linear Analysis
Author: Tadeusz Iwaniec
Publisher: Clarendon Press
Total Pages: 576
Release: 2001
Genre: Language Arts & Disciplines
ISBN: 9780198509295

Iwaniec (math, Syracuse U.) and Martin (math, U. of Auckland) explain recent developments in the geometry of mappings, related to functions or deformations between subsets of the Euclidean n-space Rn and more generally between manifolds or other geometric objects. Material on mappings intersects with aspects of differential geometry, topology, partial differential equations, harmonic analysis, and the calculus of variations. Chapters cover topics such as conformal mappings, stability of the Mobius group, Sobolev theory and function spaces, the Liouville theorem, even dimensions, Picard and Montel theorems in space, uniformly quasiregular mappings, and quasiconformal groups. c. Book News Inc.

The Interaction of Analysis and Geometry

The Interaction of Analysis and Geometry
Author: Victor I. Burenkov
Publisher: American Mathematical Soc.
Total Pages: 354
Release: 2007
Genre: Mathematics
ISBN: 0821840606

Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."

Geometric Nonlinear Functional Analysis

Geometric Nonlinear Functional Analysis
Author: Yoav Benyamini
Publisher: American Mathematical Soc.
Total Pages: 503
Release: 2000
Genre: Mathematics
ISBN: 0821808354

A systematic study of geometric nonlinear functional analysis. The main theme is the study of uniformly continuous and Lipschitz functions between Banach spaces. This study leads to the classification of Banach spaces and of their important subsets in the uniform and Lipschitz categories.

Structural Stability And Morphogenesis

Structural Stability And Morphogenesis
Author: Rene Thom
Publisher: CRC Press
Total Pages: 303
Release: 2018-03-05
Genre: Mathematics
ISBN: 0429972652

First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.

Equadiff 2003 - Proceedings Of The International Conference On Differential Equations

Equadiff 2003 - Proceedings Of The International Conference On Differential Equations
Author: Freddy Dumortier
Publisher: World Scientific
Total Pages: 1180
Release: 2005-02-23
Genre: Mathematics
ISBN: 9814480916

This comprehensive volume contains the state of the art on ODE's and PDE's of different nature, functional differential equations, delay equations, and others, mostly from the dynamical systems point of view.A broad range of topics are treated through contributions by leading experts of their fields, presenting the most recent developments. A large variety of techniques are being used, stressing geometric, topological, ergodic and numerical aspects.The scope of the book is wide, ranging from pure mathematics to various applied fields. Examples of the latter are provided by subjects from earth and life sciences, classical mechanics and quantum-mechanics, among others.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences

Space Mappings with Bounded Distortion

Space Mappings with Bounded Distortion
Author: I_Uri_ Grigor_evich Reshetni_ak
Publisher: American Mathematical Soc.
Total Pages: 384
Release: 1989-12-31
Genre: Mathematics
ISBN: 9780821898215

This book is intended for researchers and students concerned with questions in analysis and function theory. The author provides an exposition of the main results obtained in recent years by Soviet and other mathematicians in the theory of mappings with bounded distortion, an active direction in contemporary mathematics. The mathematical tools presented can be applied to a broad spectrum of problems that go beyond the context of the main topic of investigation. For a number of questions in the theory of partial differential equations and the theory of functions with generalized derivatives, this is the first time they have appeared in an internationally distributed monograph.

Handbook of Complex Analysis

Handbook of Complex Analysis
Author: Reiner Kuhnau
Publisher: Elsevier
Total Pages: 876
Release: 2004-12-09
Genre: Mathematics
ISBN: 0080495176

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).